Audra L Crouch, Beatrice M Severance, Susan Creary, Darryl Hood, Michael Bailey, Asuncion Mejias, Octavio Ramilo, Michelle Gillespie, Stefanie Ebelt, Vivien Sheehan, Benjamin T Kopp, Matthew Z Anderson
{"title":"Altered nasal and oral microbiomes define pediatric sickle cell disease.","authors":"Audra L Crouch, Beatrice M Severance, Susan Creary, Darryl Hood, Michael Bailey, Asuncion Mejias, Octavio Ramilo, Michelle Gillespie, Stefanie Ebelt, Vivien Sheehan, Benjamin T Kopp, Matthew Z Anderson","doi":"10.1128/msphere.00137-25","DOIUrl":null,"url":null,"abstract":"<p><p>Sickle cell disease (SCD) is a chronic blood disorder that disrupts multiple organ systems and can lead to severe morbidity. Persistent and acute symptoms caused by immune system dysregulation in individuals with SCD could contribute to disease either directly or indirectly via dysbiosis of commensal microbes and increased susceptibility to infection. Here, we explored the nasal and oral microbiomes of children with SCD (cwSCD) to uncover potential dysbiotic associations with the blood disorder. Microbiota collected from nasal and oral swabs of 40 cwSCD were compared to eight healthy siblings using shotgun metagenomic sequencing. Commensal taxa were present at similar levels in the nasal and oral microbiome of both groups. However, the nasal microbiomes of cwSCD contained a higher prevalence of Pseudomonadota species, including pathobionts such as <i>Yersinia enterocolitica</i> and <i>Klebsiella pneumoniae</i>. Furthermore, the oral microbiome of cwSCD displayed lower α-diversity and fewer commensal and pathobiont species compared to the healthy siblings. Thus, subtle but notable shifts seem to exist in the nasal and oral microbiomes of cwSCD, suggesting an interaction between SCD and the microbiome that may influence health outcomes.</p><p><strong>Importance: </strong>The oral and nasal cavities are susceptible to environmental exposures including pathogenic microbes. In individuals with systemic disorders, antibiotic exposure, changes to the immune system, or changes to organ function could influence the composition of the microbes at these sites and the overall health of individuals. Children with sickle cell disease (SCD) commonly experience respiratory infections, such as pneumonia or sinusitis, and may have increased susceptibility to infection because of disrupted microbiota at these body sites. We found that children with SCD (cwSCD) had more pathobiont bacteria in the nasal cavity and reduced bacterial diversity in the oral cavity compared to their healthy siblings. Defining when, why, and how these changes occur in cwSCD could help identify specific microbial signatures associated with susceptibility to infection or adverse outcomes, providing insights into personalized treatment strategies and preventive measures.</p>","PeriodicalId":19052,"journal":{"name":"mSphere","volume":" ","pages":"e0013725"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12188711/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mSphere","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/msphere.00137-25","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sickle cell disease (SCD) is a chronic blood disorder that disrupts multiple organ systems and can lead to severe morbidity. Persistent and acute symptoms caused by immune system dysregulation in individuals with SCD could contribute to disease either directly or indirectly via dysbiosis of commensal microbes and increased susceptibility to infection. Here, we explored the nasal and oral microbiomes of children with SCD (cwSCD) to uncover potential dysbiotic associations with the blood disorder. Microbiota collected from nasal and oral swabs of 40 cwSCD were compared to eight healthy siblings using shotgun metagenomic sequencing. Commensal taxa were present at similar levels in the nasal and oral microbiome of both groups. However, the nasal microbiomes of cwSCD contained a higher prevalence of Pseudomonadota species, including pathobionts such as Yersinia enterocolitica and Klebsiella pneumoniae. Furthermore, the oral microbiome of cwSCD displayed lower α-diversity and fewer commensal and pathobiont species compared to the healthy siblings. Thus, subtle but notable shifts seem to exist in the nasal and oral microbiomes of cwSCD, suggesting an interaction between SCD and the microbiome that may influence health outcomes.
Importance: The oral and nasal cavities are susceptible to environmental exposures including pathogenic microbes. In individuals with systemic disorders, antibiotic exposure, changes to the immune system, or changes to organ function could influence the composition of the microbes at these sites and the overall health of individuals. Children with sickle cell disease (SCD) commonly experience respiratory infections, such as pneumonia or sinusitis, and may have increased susceptibility to infection because of disrupted microbiota at these body sites. We found that children with SCD (cwSCD) had more pathobiont bacteria in the nasal cavity and reduced bacterial diversity in the oral cavity compared to their healthy siblings. Defining when, why, and how these changes occur in cwSCD could help identify specific microbial signatures associated with susceptibility to infection or adverse outcomes, providing insights into personalized treatment strategies and preventive measures.
期刊介绍:
mSphere™ is a multi-disciplinary open-access journal that will focus on rapid publication of fundamental contributions to our understanding of microbiology. Its scope will reflect the immense range of fields within the microbial sciences, creating new opportunities for researchers to share findings that are transforming our understanding of human health and disease, ecosystems, neuroscience, agriculture, energy production, climate change, evolution, biogeochemical cycling, and food and drug production. Submissions will be encouraged of all high-quality work that makes fundamental contributions to our understanding of microbiology. mSphere™ will provide streamlined decisions, while carrying on ASM''s tradition for rigorous peer review.