Mustafa Uguten, Joeri van Boxtel, Hieronymus P Stevens, Martin C Harmsen, Joris A van Dongen
{"title":"GMP Compliant Production of Therapeutic Components of Autologous Adipose Tissue.","authors":"Mustafa Uguten, Joeri van Boxtel, Hieronymus P Stevens, Martin C Harmsen, Joris A van Dongen","doi":"10.1007/978-1-0716-4510-9_24","DOIUrl":null,"url":null,"abstract":"<p><p>Adipose tissue is a popular source of tissue for cellular therapy in the field of regenerative medicine. The regenerative potential is often ascribed to the presence of stromal vascular fraction (SVF) containing extracellular matrix and multipotent stromal cells secreting a plethora of growth factors to create a regenerative environment. SVF can be isolated by means of enzymatic or mechanical isolation procedures and expanded in culture or directly used intraoperatively. Depending on the clinical use of SVF, specific regulatory requirements are demanded and might classify SVF as an advanced therapy medicinal product (ATMP). As an ATMP, SVF must be manufactured, processed, and controlled according to good manufacturing practice (GMP) guidelines to ensure safety and quality. Subsequently, the GMP standards require extensive validation, process control, and characterization of SVF. Here we report a GMP-compliant production of clinical grade tissue (tSVF) by means of fractionation of adipose tissue (FAT) procedure. Previous validation studies demonstrated tSVF to be safe and feasible for clinical use intraoperatively according to GMP standards with the appropriate release criteria. The presented procedures can be used as a template for the development of an investigational medicinal product dossier to be enclosed in future clinical trials (Fig. 1).</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":"2922 ","pages":"307-323"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-1-0716-4510-9_24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Adipose tissue is a popular source of tissue for cellular therapy in the field of regenerative medicine. The regenerative potential is often ascribed to the presence of stromal vascular fraction (SVF) containing extracellular matrix and multipotent stromal cells secreting a plethora of growth factors to create a regenerative environment. SVF can be isolated by means of enzymatic or mechanical isolation procedures and expanded in culture or directly used intraoperatively. Depending on the clinical use of SVF, specific regulatory requirements are demanded and might classify SVF as an advanced therapy medicinal product (ATMP). As an ATMP, SVF must be manufactured, processed, and controlled according to good manufacturing practice (GMP) guidelines to ensure safety and quality. Subsequently, the GMP standards require extensive validation, process control, and characterization of SVF. Here we report a GMP-compliant production of clinical grade tissue (tSVF) by means of fractionation of adipose tissue (FAT) procedure. Previous validation studies demonstrated tSVF to be safe and feasible for clinical use intraoperatively according to GMP standards with the appropriate release criteria. The presented procedures can be used as a template for the development of an investigational medicinal product dossier to be enclosed in future clinical trials (Fig. 1).
期刊介绍:
For over 20 years, biological scientists have come to rely on the research protocols and methodologies in the critically acclaimed Methods in Molecular Biology series. The series was the first to introduce the step-by-step protocols approach that has become the standard in all biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-step fashion, opening with an introductory overview, a list of the materials and reagents needed to complete the experiment, and followed by a detailed procedure that is supported with a helpful notes section offering tips and tricks of the trade as well as troubleshooting advice.