Mattias Bergentall , Valentina Tremaroli , Chuqing Sun , Marcus Henricsson , Muhammad Tanweer Khan , Louise Mannerås Holm , Lisa Olsson , Per-Olof Bergh , Antonio Molinaro , Adil Mardinoglu , Robert Caesar , Max Nieuwdorp , Fredrik Bäckhed
{"title":"Gut microbiota mediates SREBP-1c-driven hepatic lipogenesis and steatosis in response to zero-fat high-sucrose diet","authors":"Mattias Bergentall , Valentina Tremaroli , Chuqing Sun , Marcus Henricsson , Muhammad Tanweer Khan , Louise Mannerås Holm , Lisa Olsson , Per-Olof Bergh , Antonio Molinaro , Adil Mardinoglu , Robert Caesar , Max Nieuwdorp , Fredrik Bäckhed","doi":"10.1016/j.molmet.2025.102162","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><div>Sucrose-rich diets promote hepatic <em>de novo</em> lipogenesis (DNL) and steatosis through interactions with the gut microbiota. However, the role of sugar-microbiota dynamics in the absence of dietary fat remains unclear. This study aimed to investigate the effects of a high-sucrose, zero-fat diet (ZFD) on hepatic steatosis and host metabolism in conventionally raised (CONVR) and germ-free (GF) mice.</div></div><div><h3>Methods</h3><div>CONVR and GF mice were fed a ZFD, and hepatic lipid accumulation, gene expression, and metabolite levels were analyzed. DNL activity was assessed by measuring malonyl-CoA levels, expression of key DNL enzymes, and activation of the transcription factor SREBP-1c. Metabolomic analyses of portal vein plasma identified microbiota-derived metabolites linked to hepatic steatosis. To further examine the role of SREBP-1c, its hepatic expression was knocked down using antisense oligonucleotides in CONVR ZFD-fed mice.</div></div><div><h3>Results</h3><div>The gut microbiota was essential for sucrose-induced DNL and hepatic steatosis. In CONVR ZFD-fed mice, hepatic fat accumulation increased alongside elevated expression of genes encoding DNL enzymes, higher malonyl-CoA levels, and upregulation of SREBP-1c. Regardless of microbiota status, ZFD induced fatty acid elongase and desaturase gene expression and increased hepatic monounsaturated fatty acids. Metabolomic analyses identified microbiota-derived metabolites associated with hepatic steatosis. SREBP-1c knockdown in CONVR ZFD-fed mice reduced hepatic steatosis and suppressed fatty acid synthase expression.</div></div><div><h3>Conclusions</h3><div>Sucrose-microbiota interactions and SREBP-1c are required for DNL and hepatic steatosis in the absence of dietary fat. These findings provide new insights into the complex interplay between diet, gut microbiota, and metabolic regulation.</div></div>","PeriodicalId":18765,"journal":{"name":"Molecular Metabolism","volume":"97 ","pages":"Article 102162"},"PeriodicalIF":7.0000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Metabolism","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212877825000699","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives
Sucrose-rich diets promote hepatic de novo lipogenesis (DNL) and steatosis through interactions with the gut microbiota. However, the role of sugar-microbiota dynamics in the absence of dietary fat remains unclear. This study aimed to investigate the effects of a high-sucrose, zero-fat diet (ZFD) on hepatic steatosis and host metabolism in conventionally raised (CONVR) and germ-free (GF) mice.
Methods
CONVR and GF mice were fed a ZFD, and hepatic lipid accumulation, gene expression, and metabolite levels were analyzed. DNL activity was assessed by measuring malonyl-CoA levels, expression of key DNL enzymes, and activation of the transcription factor SREBP-1c. Metabolomic analyses of portal vein plasma identified microbiota-derived metabolites linked to hepatic steatosis. To further examine the role of SREBP-1c, its hepatic expression was knocked down using antisense oligonucleotides in CONVR ZFD-fed mice.
Results
The gut microbiota was essential for sucrose-induced DNL and hepatic steatosis. In CONVR ZFD-fed mice, hepatic fat accumulation increased alongside elevated expression of genes encoding DNL enzymes, higher malonyl-CoA levels, and upregulation of SREBP-1c. Regardless of microbiota status, ZFD induced fatty acid elongase and desaturase gene expression and increased hepatic monounsaturated fatty acids. Metabolomic analyses identified microbiota-derived metabolites associated with hepatic steatosis. SREBP-1c knockdown in CONVR ZFD-fed mice reduced hepatic steatosis and suppressed fatty acid synthase expression.
Conclusions
Sucrose-microbiota interactions and SREBP-1c are required for DNL and hepatic steatosis in the absence of dietary fat. These findings provide new insights into the complex interplay between diet, gut microbiota, and metabolic regulation.
期刊介绍:
Molecular Metabolism is a leading journal dedicated to sharing groundbreaking discoveries in the field of energy homeostasis and the underlying factors of metabolic disorders. These disorders include obesity, diabetes, cardiovascular disease, and cancer. Our journal focuses on publishing research driven by hypotheses and conducted to the highest standards, aiming to provide a mechanistic understanding of energy homeostasis-related behavior, physiology, and dysfunction.
We promote interdisciplinary science, covering a broad range of approaches from molecules to humans throughout the lifespan. Our goal is to contribute to transformative research in metabolism, which has the potential to revolutionize the field. By enabling progress in the prognosis, prevention, and ultimately the cure of metabolic disorders and their long-term complications, our journal seeks to better the future of health and well-being.