Application of knee joint distraction: challenges and opportunities.

IF 2.8 4区 医学 Q3 CELL BIOLOGY
M P Jansen, S C Mastbergen
{"title":"Application of knee joint distraction: challenges and opportunities.","authors":"M P Jansen, S C Mastbergen","doi":"10.1080/03008207.2025.2490796","DOIUrl":null,"url":null,"abstract":"<p><p>Knee osteoarthritis (OA) is a debilitating condition with limited treatment options beyond symptom management or total knee arthroplasty (TKA). For younger patients, TKA presents challenges, including higher failure rates and revision surgeries. Knee joint distraction (KJD) has emerged as a promising joint-preserving alternative for end-stage knee OA, demonstrating significant improvements in pain, function, and quality of life in clinical trials and clinical practice. Almost 20 years of research has highlighted KJD's capacity to delay or prevent TKA by promoting cartilage and subchondral bone repair through whole-joint remodeling. Recent studies, including a multicenter trial with a purpose-built distraction device, confirm the treatment's efficacy and durability, with benefits lasting up to 10 years. However, long-term outcomes remain limited, and variability in patient response underscores the need for refined predictive tools. Challenges include the high incidence of pin tract infections during treatment and integrating KJD into routine clinical practice, as highlighted by limited trial enrollment in the UK KARDS trial and variability in healthcare system compatibility. Future research should focus on minimizing complications, improving patient selection through advanced imaging and biomarker analyses, and further understanding the mechanisms underlying KJD-induced joint remodeling. Large-scale trials like the ongoing Dutch GODIVA study are poised to provide robust evidence for KJD's broader adoption, implementation, and reimbursement in healthcare systems. With continued advancements, KJD holds the potential to transform the management of knee OA, offering a viable alternative to TKA for younger patients and addressing a critical unmet need in OA care.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":" ","pages":"1-7"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Connective Tissue Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03008207.2025.2490796","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Knee osteoarthritis (OA) is a debilitating condition with limited treatment options beyond symptom management or total knee arthroplasty (TKA). For younger patients, TKA presents challenges, including higher failure rates and revision surgeries. Knee joint distraction (KJD) has emerged as a promising joint-preserving alternative for end-stage knee OA, demonstrating significant improvements in pain, function, and quality of life in clinical trials and clinical practice. Almost 20 years of research has highlighted KJD's capacity to delay or prevent TKA by promoting cartilage and subchondral bone repair through whole-joint remodeling. Recent studies, including a multicenter trial with a purpose-built distraction device, confirm the treatment's efficacy and durability, with benefits lasting up to 10 years. However, long-term outcomes remain limited, and variability in patient response underscores the need for refined predictive tools. Challenges include the high incidence of pin tract infections during treatment and integrating KJD into routine clinical practice, as highlighted by limited trial enrollment in the UK KARDS trial and variability in healthcare system compatibility. Future research should focus on minimizing complications, improving patient selection through advanced imaging and biomarker analyses, and further understanding the mechanisms underlying KJD-induced joint remodeling. Large-scale trials like the ongoing Dutch GODIVA study are poised to provide robust evidence for KJD's broader adoption, implementation, and reimbursement in healthcare systems. With continued advancements, KJD holds the potential to transform the management of knee OA, offering a viable alternative to TKA for younger patients and addressing a critical unmet need in OA care.

膝关节牵拉术的应用:挑战与机遇。
膝关节骨性关节炎(OA)是一种使人衰弱的疾病,除了症状管理或全膝关节置换术(TKA)之外,治疗选择有限。对于年轻患者,TKA带来了挑战,包括更高的失败率和翻修手术。膝关节牵张术(KJD)已成为一种很有前途的终末期膝关节OA的关节保留替代方法,在临床试验和临床实践中显示出对疼痛、功能和生活质量的显著改善。近20年的研究强调了KJD通过全关节重塑促进软骨和软骨下骨修复来延缓或预防TKA的能力。最近的研究,包括一项使用专门制造的分心装置的多中心试验,证实了这种治疗的有效性和持久性,其益处可持续长达10年。然而,长期结果仍然有限,患者反应的可变性强调了改进预测工具的必要性。挑战包括在治疗期间针道感染的高发生率,以及将KJD纳入常规临床实践,这一点在英国KARDS试验中得到了突出体现,因为试验人数有限,医疗系统兼容性也存在差异。未来的研究应侧重于减少并发症,通过先进的成像和生物标志物分析改善患者选择,并进一步了解kjd诱导关节重塑的机制。像正在进行的荷兰GODIVA研究这样的大规模试验准备为KJD在医疗保健系统中的广泛采用、实施和报销提供有力的证据。随着不断的进步,KJD具有改变膝关节OA管理的潜力,为年轻患者提供TKA的可行替代方案,并解决OA护理中关键的未满足需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Connective Tissue Research
Connective Tissue Research 生物-细胞生物学
CiteScore
6.60
自引率
3.40%
发文量
37
审稿时长
2 months
期刊介绍: The aim of Connective Tissue Research is to present original and significant research in all basic areas of connective tissue and matrix biology. The journal also provides topical reviews and, on occasion, the proceedings of conferences in areas of special interest at which original work is presented. The journal supports an interdisciplinary approach; we present a variety of perspectives from different disciplines, including Biochemistry Cell and Molecular Biology Immunology Structural Biology Biophysics Biomechanics Regenerative Medicine The interests of the Editorial Board are to understand, mechanistically, the structure-function relationships in connective tissue extracellular matrix, and its associated cells, through interpretation of sophisticated experimentation using state-of-the-art technologies that include molecular genetics, imaging, immunology, biomechanics and tissue engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信