Yunqi Li, Natalina Elliott, Patricia Lein, Paresh Vyas, Irene Roberts, Adam J de Smith
{"title":"Genome-wide association study of somatic GATA1s mutations in newborns with Down Syndrome.","authors":"Yunqi Li, Natalina Elliott, Patricia Lein, Paresh Vyas, Irene Roberts, Adam J de Smith","doi":"10.1182/bloodadvances.2025016282","DOIUrl":null,"url":null,"abstract":"<p><p>Myeloid Leukemia of Down Syndrome (ML-DS) is preceded by a transient neonatal preleukemia driven by somatic mutations in the chromosome X gene GATA1, resulting in a shorter protein isoform (GATA1s). GATA1s mutations occur at high frequency in DS but beyond trisomy 21, risk factors for this preleukemia are unknown. We investigated whether germline genetic variation influences development of GATA1s mutations in DS. Whole-genome sequencing was performed on 434 DS children from the Oxford DS Study previously screened for GATA1s mutations. Following quality control, association tests were conducted separately for disomic autosomes, trisomic chromosome 21, and chromosome X. Regression tests were performed for mutation variant allele frequency or the binary trait (103 GATA1s-positive cases, 326 controls), adjusting for sex and ancestry-related principal components. Genetic ancestry of each subject was inferred and tested for association with GATA1s mutations. We identified three genome-wide significant (P<5x10-8) loci associated with GATA1s mutations. However, these may be false positives as few linked variants showed evidence of association at each locus. No significant associations were detected on chromosome 21 or the GATA1 region on chromosome X. Increasing proportions of South Asian genetic ancestry were associated with an increased risk of GATA1s mutations, with each 10% increase in ancestry associated with a 1.11-fold higher risk of developing GATA1s mutations (P=0.031). Our genetic epidemiology study of somatic GATA1s mutations in DS did not identify strong germline genetic effects. The association with genetic ancestry may relate to unmeasured genetic or nongenetic effects, such as fetal exposures, and warrants further investigation.</p>","PeriodicalId":9228,"journal":{"name":"Blood advances","volume":" ","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blood advances","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1182/bloodadvances.2025016282","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Myeloid Leukemia of Down Syndrome (ML-DS) is preceded by a transient neonatal preleukemia driven by somatic mutations in the chromosome X gene GATA1, resulting in a shorter protein isoform (GATA1s). GATA1s mutations occur at high frequency in DS but beyond trisomy 21, risk factors for this preleukemia are unknown. We investigated whether germline genetic variation influences development of GATA1s mutations in DS. Whole-genome sequencing was performed on 434 DS children from the Oxford DS Study previously screened for GATA1s mutations. Following quality control, association tests were conducted separately for disomic autosomes, trisomic chromosome 21, and chromosome X. Regression tests were performed for mutation variant allele frequency or the binary trait (103 GATA1s-positive cases, 326 controls), adjusting for sex and ancestry-related principal components. Genetic ancestry of each subject was inferred and tested for association with GATA1s mutations. We identified three genome-wide significant (P<5x10-8) loci associated with GATA1s mutations. However, these may be false positives as few linked variants showed evidence of association at each locus. No significant associations were detected on chromosome 21 or the GATA1 region on chromosome X. Increasing proportions of South Asian genetic ancestry were associated with an increased risk of GATA1s mutations, with each 10% increase in ancestry associated with a 1.11-fold higher risk of developing GATA1s mutations (P=0.031). Our genetic epidemiology study of somatic GATA1s mutations in DS did not identify strong germline genetic effects. The association with genetic ancestry may relate to unmeasured genetic or nongenetic effects, such as fetal exposures, and warrants further investigation.
期刊介绍:
Blood Advances, a semimonthly medical journal published by the American Society of Hematology, marks the first addition to the Blood family in 70 years. This peer-reviewed, online-only, open-access journal was launched under the leadership of founding editor-in-chief Robert Negrin, MD, from Stanford University Medical Center in Stanford, CA, with its inaugural issue released on November 29, 2016.
Blood Advances serves as an international platform for original articles detailing basic laboratory, translational, and clinical investigations in hematology. The journal comprehensively covers all aspects of hematology, including disorders of leukocytes (both benign and malignant), erythrocytes, platelets, hemostatic mechanisms, vascular biology, immunology, and hematologic oncology. Each article undergoes a rigorous peer-review process, with selection based on the originality of the findings, the high quality of the work presented, and the clarity of the presentation.