Time- and dose-dependent effects of CIGB-300 on the proteome of lung squamous cell carcinoma.

IF 2.9 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Liudy García-Hernández, Lingfeng Dai, Arielis Rodríguez-Ulloa, Ying Yi, Luis J González, Vladimir Besada, Wen Li, Silvio E Perea, Yasser Perera
{"title":"Time- and dose-dependent effects of CIGB-300 on the proteome of lung squamous cell carcinoma.","authors":"Liudy García-Hernández, Lingfeng Dai, Arielis Rodríguez-Ulloa, Ying Yi, Luis J González, Vladimir Besada, Wen Li, Silvio E Perea, Yasser Perera","doi":"10.1515/hsz-2024-0149","DOIUrl":null,"url":null,"abstract":"<p><p>Proteome-wide scale in a dose - and time-depending setting is crucial to fully understand the pharmacological mechanism of anticancer drugs as well as identification of candidates for drug response biomarkers. Here, we investigated the effect of the CIGB-300 anticancer peptide at IC<sub>50</sub> and IC<sub>80</sub> doses during 1 and 4 h of treatment on the squamous lung cancer cell (NCI-H226) proteome. An overwhelming dose-dependent inhibitory effect with minor up-regulated proteins was observed by increasing CIGB-300 dose level. Functional enrichment was also CIGB-300 dose-dependent with common or exclusively regulated proteins in each dose and time settings. A protein core involving small molecule biosynthesis, aldehyde metabolism and metabolism of nucleobases was regulated irrespectively to the dose or the treatment time. Importantly, a group of proteins linked to NSCLC tumor biology, poor clinical outcome and some Protein Kinase CK2 substrates, were significantly regulated by treating with both CIGB-300 doses. Likewise, we observed a consistent downregulation of different proteins that had been already reported to be inhibited by CIGB-300 in lung adenocarcinoma and acute myeloid leukemia. Overall, our proteomics-guided strategy based on time and drug dose served to uncover novel clues supporting the CIGB-300 cytotoxic effect and also to identify putative pharmacodynamic biomarkers in NSCLC.</p>","PeriodicalId":8885,"journal":{"name":"Biological Chemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1515/hsz-2024-0149","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Proteome-wide scale in a dose - and time-depending setting is crucial to fully understand the pharmacological mechanism of anticancer drugs as well as identification of candidates for drug response biomarkers. Here, we investigated the effect of the CIGB-300 anticancer peptide at IC50 and IC80 doses during 1 and 4 h of treatment on the squamous lung cancer cell (NCI-H226) proteome. An overwhelming dose-dependent inhibitory effect with minor up-regulated proteins was observed by increasing CIGB-300 dose level. Functional enrichment was also CIGB-300 dose-dependent with common or exclusively regulated proteins in each dose and time settings. A protein core involving small molecule biosynthesis, aldehyde metabolism and metabolism of nucleobases was regulated irrespectively to the dose or the treatment time. Importantly, a group of proteins linked to NSCLC tumor biology, poor clinical outcome and some Protein Kinase CK2 substrates, were significantly regulated by treating with both CIGB-300 doses. Likewise, we observed a consistent downregulation of different proteins that had been already reported to be inhibited by CIGB-300 in lung adenocarcinoma and acute myeloid leukemia. Overall, our proteomics-guided strategy based on time and drug dose served to uncover novel clues supporting the CIGB-300 cytotoxic effect and also to identify putative pharmacodynamic biomarkers in NSCLC.

CIGB-300对肺鳞状细胞癌蛋白质组的时间和剂量依赖性影响。
基于剂量和时间的蛋白质组范围的研究对于充分理解抗癌药物的药理机制以及确定候选药物反应生物标志物至关重要。在这里,我们研究了IC50和IC80剂量的CIGB-300抗癌肽在治疗1和4 h期间对鳞状肺癌细胞(NCI-H226)蛋白质组的影响。增加CIGB-300剂量水平,对少量上调蛋白有明显的剂量依赖性抑制作用。在每个剂量和时间设置中,功能富集也是CIGB-300剂量依赖性的,与普通或专门调节的蛋白质有关。涉及小分子生物合成、醛代谢和核碱基代谢的蛋白质核心与剂量或处理时间无关。重要的是,一组与NSCLC肿瘤生物学、不良临床结果和一些蛋白激酶CK2底物相关的蛋白通过两种剂量的CIGB-300治疗得到显著调节。同样,我们观察到在肺腺癌和急性髓系白血病中已经报道的被CIGB-300抑制的不同蛋白的一致下调。总的来说,我们基于时间和药物剂量的蛋白质组学指导策略有助于发现支持CIGB-300细胞毒性作用的新线索,并确定NSCLC中假定的药效学生物标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biological Chemistry
Biological Chemistry 生物-生化与分子生物学
CiteScore
7.20
自引率
0.00%
发文量
63
审稿时长
4-8 weeks
期刊介绍: Biological Chemistry keeps you up-to-date with all new developments in the molecular life sciences. In addition to original research reports, authoritative reviews written by leading researchers in the field keep you informed about the latest advances in the molecular life sciences. Rapid, yet rigorous reviewing ensures fast access to recent research results of exceptional significance in the biological sciences. Papers are published in a "Just Accepted" format within approx.72 hours of acceptance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信