Multisource remote sensing and ensemble learning for multidimensional monitoring of heavy metals on mine surfaces.

IF 3.2 3区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Yanru Li, Keming Yang, Xinru Gu, Lishun Peng, Xinyang Chen
{"title":"Multisource remote sensing and ensemble learning for multidimensional monitoring of heavy metals on mine surfaces.","authors":"Yanru Li, Keming Yang, Xinru Gu, Lishun Peng, Xinyang Chen","doi":"10.1007/s10653-025-02493-x","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to establish monitoring models for surface heavy metals in mining areas by utilizing multi-source remote sensing data and ensemble learning algorithms. By collecting heavy metal content data from soil and crop leaves within the study area, and combining it with data obtained from the Google Earth Engine platform, including Landsat 8, Sentinel-2 spectral data, vegetation indices, and VV and VH polarization information from Sentinel-1, along with terrain factors derived from the Digital Elevation Model such as elevation, hillshade, slope, and aspect, a total of 43 feature indicators were consolidated. Feature importance ranking (FI) and the successive projections algorithm (SPA) feature selection method were employed to filter feature factors, selecting different features for each type of heavy metal. In the soil, the optimal model for predicting Cr and Cd content is AdaBoost-MT, while the optimal model for inverting Zn, As, Hg, and Pb content is FISPA-AdaBoost-MT. In the crops, the optimal model for predicting the content of all six heavy metals is FISPA-AdaBoost-MT. This indicates that the combination of FI and SPA features effectively evaluates the heavy metal content in both soil and crops. Utilizing these multidimensional features, this study combines ensemble learning algorithms with multi-target regression techniques to construct inversion models for six types of heavy metals (Cr, Zn, As, Cd, Hg, and Pb) simultaneously. Based on the optimal prediction models, distribution maps of heavy metals in soil and crops within the study area were generated, achieving comprehensive, multidimensional monitoring of surface heavy metals in mining areas through overlay display.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"47 5","pages":"184"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-025-02493-x","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to establish monitoring models for surface heavy metals in mining areas by utilizing multi-source remote sensing data and ensemble learning algorithms. By collecting heavy metal content data from soil and crop leaves within the study area, and combining it with data obtained from the Google Earth Engine platform, including Landsat 8, Sentinel-2 spectral data, vegetation indices, and VV and VH polarization information from Sentinel-1, along with terrain factors derived from the Digital Elevation Model such as elevation, hillshade, slope, and aspect, a total of 43 feature indicators were consolidated. Feature importance ranking (FI) and the successive projections algorithm (SPA) feature selection method were employed to filter feature factors, selecting different features for each type of heavy metal. In the soil, the optimal model for predicting Cr and Cd content is AdaBoost-MT, while the optimal model for inverting Zn, As, Hg, and Pb content is FISPA-AdaBoost-MT. In the crops, the optimal model for predicting the content of all six heavy metals is FISPA-AdaBoost-MT. This indicates that the combination of FI and SPA features effectively evaluates the heavy metal content in both soil and crops. Utilizing these multidimensional features, this study combines ensemble learning algorithms with multi-target regression techniques to construct inversion models for six types of heavy metals (Cr, Zn, As, Cd, Hg, and Pb) simultaneously. Based on the optimal prediction models, distribution maps of heavy metals in soil and crops within the study area were generated, achieving comprehensive, multidimensional monitoring of surface heavy metals in mining areas through overlay display.

矿山地表重金属多维监测的多源遥感与集成学习。
本研究旨在利用多源遥感数据和集成学习算法建立矿区地表重金属监测模型。通过采集研究区土壤和作物叶片重金属含量数据,结合谷歌Earth Engine平台获取的Landsat 8、Sentinel-2光谱数据、植被指数、Sentinel-1的VV和VH极化信息,以及数字高程模型获取的高程、遮阳、坡度、坡向等地形因子,整合了43个特征指标。采用特征重要性排序法(FI)和逐次投影算法(SPA)特征选择法对特征因子进行滤波,为每种重金属类型选择不同的特征。预测土壤中Cr、Cd含量的最优模型为AdaBoost-MT,反演Zn、As、Hg、Pb含量的最优模型为FISPA-AdaBoost-MT。在作物中,预测所有六种重金属含量的最佳模型是FISPA-AdaBoost-MT。这表明FI和SPA特征结合可以有效地评价土壤和作物中的重金属含量。利用这些多维特征,本研究将集成学习算法与多目标回归技术相结合,同时构建了6种重金属(Cr、Zn、As、Cd、Hg和Pb)的反演模型。基于最优预测模型,生成研究区土壤和作物重金属分布图,通过叠加显示的方式实现矿区地表重金属的全面、多维监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Geochemistry and Health
Environmental Geochemistry and Health 环境科学-工程:环境
CiteScore
8.00
自引率
4.80%
发文量
279
审稿时长
4.2 months
期刊介绍: Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people. Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes. The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信