Warlley Rosa Cunha, Maria Martin de la Vega, Paula Rodrigues de Barros, Cristina Espinosa-Diez
{"title":"lncRNAs in vascular senescence and microvascular remodeling.","authors":"Warlley Rosa Cunha, Maria Martin de la Vega, Paula Rodrigues de Barros, Cristina Espinosa-Diez","doi":"10.1152/ajpheart.00750.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Long noncoding RNAs (lncRNAs) have emerged as critical regulators of vascular senescence and microvascular remodeling, processes that significantly contribute to the development of age-related diseases in organs such as the kidneys, heart, and lungs. Through mechanisms like chromatin remodeling, transcriptional regulation, and posttranscriptional modifications, lncRNAs modulate gene expression, thereby influencing cellular processes such as apoptosis, inflammation, fibrosis, and angiogenesis. In chronic kidney disease, cardiovascular disease, and pulmonary disorders, lncRNAs play a central role in promoting vascular dysfunction, endothelial cell aging, and fibrosis. This review focuses on how lncRNAs contribute to endothelial dysfunction, fibrosis, and vascular aging, emphasizing their roles in disease progression within the kidneys, heart, and lungs, where lncRNA-mediated vascular changes play a significant role in disease progression. Understanding the interactions between lncRNAs, vascular senescence, and microvascular remodeling offers promising avenues for developing targeted therapeutic strategies to mitigate the impact of aging on vascular health.</p>","PeriodicalId":7692,"journal":{"name":"American journal of physiology. Heart and circulatory physiology","volume":"328 6","pages":"H1238-H1252"},"PeriodicalIF":4.1000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Heart and circulatory physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpheart.00750.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Long noncoding RNAs (lncRNAs) have emerged as critical regulators of vascular senescence and microvascular remodeling, processes that significantly contribute to the development of age-related diseases in organs such as the kidneys, heart, and lungs. Through mechanisms like chromatin remodeling, transcriptional regulation, and posttranscriptional modifications, lncRNAs modulate gene expression, thereby influencing cellular processes such as apoptosis, inflammation, fibrosis, and angiogenesis. In chronic kidney disease, cardiovascular disease, and pulmonary disorders, lncRNAs play a central role in promoting vascular dysfunction, endothelial cell aging, and fibrosis. This review focuses on how lncRNAs contribute to endothelial dysfunction, fibrosis, and vascular aging, emphasizing their roles in disease progression within the kidneys, heart, and lungs, where lncRNA-mediated vascular changes play a significant role in disease progression. Understanding the interactions between lncRNAs, vascular senescence, and microvascular remodeling offers promising avenues for developing targeted therapeutic strategies to mitigate the impact of aging on vascular health.
期刊介绍:
The American Journal of Physiology-Heart and Circulatory Physiology publishes original investigations, reviews and perspectives on the physiology of the heart, vasculature, and lymphatics. These articles include experimental and theoretical studies of cardiovascular function at all levels of organization ranging from the intact and integrative animal and organ function to the cellular, subcellular, and molecular levels. The journal embraces new descriptions of these functions and their control systems, as well as their basis in biochemistry, biophysics, genetics, and cell biology. Preference is given to research that provides significant new mechanistic physiological insights that determine the performance of the normal and abnormal heart and circulation.