{"title":"Catalytic neural stem cell exosomes for multi-stage targeting and synergistical therapy of retinal ischemia-reperfusion injury.","authors":"Weiqiang Yang, Xiaojun Wang, Diwei Zheng, Jing Feng, Wenjun Kong, Yue Li, Guanghui Ma, Wei Wei, Yong Tao","doi":"10.1016/j.xcrm.2025.102052","DOIUrl":null,"url":null,"abstract":"<p><p>Neuronal damage of the retina is a leading cause of visual impairment in patients with retinal ischemia-reperfusion injury (RIRI). Building on our clinical and experimental findings, the substantial decrease in catalase activity correlates with increased hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>)-mediated oxidative stress that is primarily localized to the outer nuclear layer (ONL) situated in the posterior segment of the retina. Accordingly, we design a neural stem cell exosome with polylysine (K<sub>10</sub>) decoration and catalase expression, named CataKNexo, which reaches the ONL and exerts synergistic antioxidant and neuroprotective therapy. Utilizing an in vitro retinal model recapitulating the layered architecture of the retina, we confirm that CataKNexo reaches the ONL through K<sub>10</sub>-mediated transcytosis. In RIRI model mice, CataKNexo prevents the retina from H<sub>2</sub>O<sub>2</sub>-induced cell death, exerts neuroprotection, and restores vision function to near-normal levels. Moreover, CataKNexo shows promising antioxidative, neuroprotective, and safety profiles in RIRI model Bama miniature pigs, highlighting its potential for clinical translation.</p>","PeriodicalId":9822,"journal":{"name":"Cell Reports Medicine","volume":"6 4","pages":"102052"},"PeriodicalIF":11.7000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12047469/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xcrm.2025.102052","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Neuronal damage of the retina is a leading cause of visual impairment in patients with retinal ischemia-reperfusion injury (RIRI). Building on our clinical and experimental findings, the substantial decrease in catalase activity correlates with increased hydrogen peroxide (H2O2)-mediated oxidative stress that is primarily localized to the outer nuclear layer (ONL) situated in the posterior segment of the retina. Accordingly, we design a neural stem cell exosome with polylysine (K10) decoration and catalase expression, named CataKNexo, which reaches the ONL and exerts synergistic antioxidant and neuroprotective therapy. Utilizing an in vitro retinal model recapitulating the layered architecture of the retina, we confirm that CataKNexo reaches the ONL through K10-mediated transcytosis. In RIRI model mice, CataKNexo prevents the retina from H2O2-induced cell death, exerts neuroprotection, and restores vision function to near-normal levels. Moreover, CataKNexo shows promising antioxidative, neuroprotective, and safety profiles in RIRI model Bama miniature pigs, highlighting its potential for clinical translation.
Cell Reports MedicineBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
15.00
自引率
1.40%
发文量
231
审稿时长
40 days
期刊介绍:
Cell Reports Medicine is an esteemed open-access journal by Cell Press that publishes groundbreaking research in translational and clinical biomedical sciences, influencing human health and medicine.
Our journal ensures wide visibility and accessibility, reaching scientists and clinicians across various medical disciplines. We publish original research that spans from intriguing human biology concepts to all aspects of clinical work. We encourage submissions that introduce innovative ideas, forging new paths in clinical research and practice. We also welcome studies that provide vital information, enhancing our understanding of current standards of care in diagnosis, treatment, and prognosis. This encompasses translational studies, clinical trials (including long-term follow-ups), genomics, biomarker discovery, and technological advancements that contribute to diagnostics, treatment, and healthcare. Additionally, studies based on vertebrate model organisms are within the scope of the journal, as long as they directly relate to human health and disease.