Laura Sartori Assunção, Iara Patricia Kretzer, Jelver Alexander Sierra Restrepo, Leonidas João de Mello Junior, Flavio Augusto Rocha Barbosa, Misael Ferreira, Marcus Mandolesi Sá, Tânia Beatriz Creczynski-Pasa
{"title":"Methyl (Z)-2-(Isothioureidomethyl)-2-pentenoate Hydrobromide Induces Cell Cycle Arrest and Disrupts Mitosis in a Melanoma Cell Line.","authors":"Laura Sartori Assunção, Iara Patricia Kretzer, Jelver Alexander Sierra Restrepo, Leonidas João de Mello Junior, Flavio Augusto Rocha Barbosa, Misael Ferreira, Marcus Mandolesi Sá, Tânia Beatriz Creczynski-Pasa","doi":"10.2174/0118715206358941250413154017","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction/objective: </strong>Cancer is a global health burden. Despite advances in early detection and therapeutics, cancer prevalence continues to increase, underscoring the need for innovative therapeutic strategies. Dysregulation of cell death mechanisms is a hallmark of cancer that can lead to apoptosis evasion, which strongly contributes to tumor progression and therapy resistance. Isothiouronium salts have attracted attention as promising antitumor agents. This study aimed to evaluate the in vitro antitumor effect of an isothiouronium salt (ISMF08) on the B16F10 melanoma cell line.</p><p><strong>Methods: </strong>The antitumor properties of IS-MF08 were investigated by incubating B16F10 cells with the compound at different concentrations. Cytotoxicity was determined by the (3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide) (MTT) assay, cell cycle arrest and cell death mechanisms by flow cytometry, and morphological alterations by transmission electron microscopy. Physicochemical parameters related to druglikeness were predicted in silico using the SwissADME tool.</p><p><strong>Results: </strong>IS-MF08 was cytotoxic to melanoma cells, triggering cell cycle arrest and disrupting mitosis. The mechanism of cell death was compatible with apoptosis, as indicated by annexin V-FITC experiments and the relevant morphological changes in cell structure observed by transmission electron microscopy. SwissADME predicted that IS-MF08 has good physicochemical properties related to absorption and permeation.</p><p><strong>Conclusion: </strong>The numerous mechanisms of cell death triggered by IS-MF08 and its drug-likeness make it an interesting molecule in the search for new antitumor compounds, contributing to therapies targeting the dysregulation of cellular mechanisms such as apoptosis.</p>","PeriodicalId":7934,"journal":{"name":"Anti-cancer agents in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-cancer agents in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0118715206358941250413154017","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction/objective: Cancer is a global health burden. Despite advances in early detection and therapeutics, cancer prevalence continues to increase, underscoring the need for innovative therapeutic strategies. Dysregulation of cell death mechanisms is a hallmark of cancer that can lead to apoptosis evasion, which strongly contributes to tumor progression and therapy resistance. Isothiouronium salts have attracted attention as promising antitumor agents. This study aimed to evaluate the in vitro antitumor effect of an isothiouronium salt (ISMF08) on the B16F10 melanoma cell line.
Methods: The antitumor properties of IS-MF08 were investigated by incubating B16F10 cells with the compound at different concentrations. Cytotoxicity was determined by the (3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide) (MTT) assay, cell cycle arrest and cell death mechanisms by flow cytometry, and morphological alterations by transmission electron microscopy. Physicochemical parameters related to druglikeness were predicted in silico using the SwissADME tool.
Results: IS-MF08 was cytotoxic to melanoma cells, triggering cell cycle arrest and disrupting mitosis. The mechanism of cell death was compatible with apoptosis, as indicated by annexin V-FITC experiments and the relevant morphological changes in cell structure observed by transmission electron microscopy. SwissADME predicted that IS-MF08 has good physicochemical properties related to absorption and permeation.
Conclusion: The numerous mechanisms of cell death triggered by IS-MF08 and its drug-likeness make it an interesting molecule in the search for new antitumor compounds, contributing to therapies targeting the dysregulation of cellular mechanisms such as apoptosis.
期刊介绍:
Formerly: Current Medicinal Chemistry - Anti-Cancer Agents.
Anti-Cancer Agents in Medicinal Chemistry aims to cover all the latest and outstanding developments in medicinal chemistry and rational drug design for the discovery of anti-cancer agents.
Each issue contains a series of timely in-depth reviews and guest edited issues written by leaders in the field covering a range of current topics in cancer medicinal chemistry. The journal only considers high quality research papers for publication.
Anti-Cancer Agents in Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments in cancer drug discovery.