Jiayi Liang, Eric Aliotta, Neelam Tyagi, Paola Godoy Scripes, Nicolas Côté, Ergys Subashi, Qijie Huang, Lian Sun, Ching-Yun Chan, Angela Ng, Theresa Wunner, Victoria Brennan, Kaveh Zakeri, James Mechalakos
{"title":"Risk analysis of the Unity 1.5T MR-Linac adapt-to-shape workflow","authors":"Jiayi Liang, Eric Aliotta, Neelam Tyagi, Paola Godoy Scripes, Nicolas Côté, Ergys Subashi, Qijie Huang, Lian Sun, Ching-Yun Chan, Angela Ng, Theresa Wunner, Victoria Brennan, Kaveh Zakeri, James Mechalakos","doi":"10.1002/acm2.70095","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background and Purpose</h3>\n \n <p>The adapt-to-shape (ATS) workflow on the Unity MR-Linac (Elekta AB, Stockholm, Sweden) allows for full replanning including recontouring and reoptimization<sup>5</sup>. Additional complexity to this workflow is added when the adaptation involves the use of MIM Maestro (MIM Software, Cleveland, OH) software in conjunction with Monaco (Elekta AB, Stockholm, Sweden). Given the interplay of various systems and the inherent complexity of the ATS workflow, a risk analysis would be instructive.</p>\n </section>\n \n <section>\n \n <h3> Method</h3>\n \n <p>Failure modes and effects analysis (FMEA) following Task Group 100<sup>13</sup> was completed to evaluate the ATS workflow. A multi-disciplinary team was formed for this analysis. The team created a process map detailing the steps involved in ATS treating both the standard Monaco workflow and a workflow with the use of MIM software in parallel. From this, failure modes were identified, scored using three categories (likelihood of occurrence, severity, and detectability which multiplied create a risk priority number), and then mitigations for the top 20<sup>th</sup> percentile of failure modes were found.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Risk analysis found 264 failure modes in the ATS workflow. Of those, 82 were high-ranking failure modes that ranked in the top 20<sup>th</sup> percentile for risk priority number and severity scores. Although high-ranking failure modes were identified in each step in the process, 62 of them were found in the contouring and planning steps, highlighting key differences from adapt-to-position (ATP), where the importance of these steps are minimized. Mitigations are suggested for all high-ranking failure modes.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>The flexibility of the ATS workflow, which enables reoptimization of the treatment plan, also introduces potential critical points where errors can occur. There are more opportunities for error in ATS that can create unintentionally negative dosimetric impact. FMEA can help mitigate these risks by identifying and addressing potential failure points in the ATS process.</p>\n </section>\n </div>","PeriodicalId":14989,"journal":{"name":"Journal of Applied Clinical Medical Physics","volume":"26 7","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/acm2.70095","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Clinical Medical Physics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/acm2.70095","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Background and Purpose
The adapt-to-shape (ATS) workflow on the Unity MR-Linac (Elekta AB, Stockholm, Sweden) allows for full replanning including recontouring and reoptimization5. Additional complexity to this workflow is added when the adaptation involves the use of MIM Maestro (MIM Software, Cleveland, OH) software in conjunction with Monaco (Elekta AB, Stockholm, Sweden). Given the interplay of various systems and the inherent complexity of the ATS workflow, a risk analysis would be instructive.
Method
Failure modes and effects analysis (FMEA) following Task Group 10013 was completed to evaluate the ATS workflow. A multi-disciplinary team was formed for this analysis. The team created a process map detailing the steps involved in ATS treating both the standard Monaco workflow and a workflow with the use of MIM software in parallel. From this, failure modes were identified, scored using three categories (likelihood of occurrence, severity, and detectability which multiplied create a risk priority number), and then mitigations for the top 20th percentile of failure modes were found.
Results
Risk analysis found 264 failure modes in the ATS workflow. Of those, 82 were high-ranking failure modes that ranked in the top 20th percentile for risk priority number and severity scores. Although high-ranking failure modes were identified in each step in the process, 62 of them were found in the contouring and planning steps, highlighting key differences from adapt-to-position (ATP), where the importance of these steps are minimized. Mitigations are suggested for all high-ranking failure modes.
Conclusion
The flexibility of the ATS workflow, which enables reoptimization of the treatment plan, also introduces potential critical points where errors can occur. There are more opportunities for error in ATS that can create unintentionally negative dosimetric impact. FMEA can help mitigate these risks by identifying and addressing potential failure points in the ATS process.
期刊介绍:
Journal of Applied Clinical Medical Physics is an international Open Access publication dedicated to clinical medical physics. JACMP welcomes original contributions dealing with all aspects of medical physics from scientists working in the clinical medical physics around the world. JACMP accepts only online submission.
JACMP will publish:
-Original Contributions: Peer-reviewed, investigations that represent new and significant contributions to the field. Recommended word count: up to 7500.
-Review Articles: Reviews of major areas or sub-areas in the field of clinical medical physics. These articles may be of any length and are peer reviewed.
-Technical Notes: These should be no longer than 3000 words, including key references.
-Letters to the Editor: Comments on papers published in JACMP or on any other matters of interest to clinical medical physics. These should not be more than 1250 (including the literature) and their publication is only based on the decision of the editor, who occasionally asks experts on the merit of the contents.
-Book Reviews: The editorial office solicits Book Reviews.
-Announcements of Forthcoming Meetings: The Editor may provide notice of forthcoming meetings, course offerings, and other events relevant to clinical medical physics.
-Parallel Opposed Editorial: We welcome topics relevant to clinical practice and medical physics profession. The contents can be controversial debate or opposed aspects of an issue. One author argues for the position and the other against. Each side of the debate contains an opening statement up to 800 words, followed by a rebuttal up to 500 words. Readers interested in participating in this series should contact the moderator with a proposed title and a short description of the topic