{"title":"Clofoctol impairs the stemness of gastric cancer and induces TNF-mediated necroptosis by directly binding to RanBP2.","authors":"Yi Liu, Yanhui Ma, Bingqian Zhou, Bingxian Bian, Yunlan Zhou, Shiyu Chen, Peng Zhang, Lisong Shen, Hui Chen","doi":"10.1007/s00018-025-05723-8","DOIUrl":null,"url":null,"abstract":"<p><p>Gastric cancer stem cells (GCSCs) play a crucial role in the initiation, progression, recurrence and therapeutic resistance, contributing to a poor prognosis. Consequently, GCSCs are deemed to be a potential therapeutic target for gastric cancer (GC). Although β-catenin is a well-recognized therapeutic target for GC and several inhibitors have demonstrated potent anti-tumor effects, there is a dearth of therapeutic agents targeting β-catenin for clinical therapy. In this study, we carried out high-throughput screening of clinically approved drugs to identify effective inhibitors of β-catenin. The results revealed that the antibiotic drug, clofoctol (CFT) effectively reduced the β-catenin level, attenuated stemness traits both in vitro and in vivo, and induced necroptosis of GCSCs. Further analyzing of downstream genes and targeted proteins, we found that CFT inhibited GCSCs viability by binding to the SUMO E3 ligase RanBP2, thereby suppressing the SerpinE1/β-catenin axis and activating TNF-mediated necroptosis. These results indicate that CFT may exert potent therapeutic effects against GC by targeting β-catenin and inhibiting the viability of GCSCs.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"82 1","pages":"194"},"PeriodicalIF":6.2000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12052660/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00018-025-05723-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Gastric cancer stem cells (GCSCs) play a crucial role in the initiation, progression, recurrence and therapeutic resistance, contributing to a poor prognosis. Consequently, GCSCs are deemed to be a potential therapeutic target for gastric cancer (GC). Although β-catenin is a well-recognized therapeutic target for GC and several inhibitors have demonstrated potent anti-tumor effects, there is a dearth of therapeutic agents targeting β-catenin for clinical therapy. In this study, we carried out high-throughput screening of clinically approved drugs to identify effective inhibitors of β-catenin. The results revealed that the antibiotic drug, clofoctol (CFT) effectively reduced the β-catenin level, attenuated stemness traits both in vitro and in vivo, and induced necroptosis of GCSCs. Further analyzing of downstream genes and targeted proteins, we found that CFT inhibited GCSCs viability by binding to the SUMO E3 ligase RanBP2, thereby suppressing the SerpinE1/β-catenin axis and activating TNF-mediated necroptosis. These results indicate that CFT may exert potent therapeutic effects against GC by targeting β-catenin and inhibiting the viability of GCSCs.
期刊介绍:
Journal Name: Cellular and Molecular Life Sciences (CMLS)
Location: Basel, Switzerland
Focus:
Multidisciplinary journal
Publishes research articles, reviews, multi-author reviews, and visions & reflections articles
Coverage:
Latest aspects of biological and biomedical research
Areas include:
Biochemistry and molecular biology
Cell biology
Molecular and cellular aspects of biomedicine
Neuroscience
Pharmacology
Immunology
Additional Features:
Welcomes comments on any article published in CMLS
Accepts suggestions for topics to be covered