{"title":"metaTP: a meta-transcriptome data analysis pipeline with integrated automated workflows.","authors":"Limuxuan He, Quan Zou, Yansu Wang","doi":"10.1186/s12859-025-06137-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The accessibility of sequencing technologies has enabled meta-transcriptomic studies to provide a deeper understanding of microbial ecology at the transcriptional level. Analyzing omics data involves multiple steps that require the use of various bioinformatics tools. With the increasing availability of public microbiome datasets, conducting meta-analyses can reveal new insights into microbiome activity. However, the reproducibility of data is often compromised due to variations in processing methods for sample omics data. Therefore, it is essential to develop efficient analytical workflows that ensure repeatability, reproducibility, and the traceability of results in microbiome research.</p><p><strong>Results: </strong>We developed metaTP, a pipeline that integrates bioinformatics tools for analyzing meta-transcriptomic data comprehensively. The pipeline includes quality control, non-coding RNA removal, transcript expression quantification, differential gene expression analysis, functional annotation, and co-expression network analysis. To quantify mRNA expression, we rely on reference indexes built using protein-coding sequences, which help overcome the limitations of database analysis. Additionally, metaTP provides a function for calculating the topological properties of gene co-expression networks, offering an intuitive explanation for correlated gene sets in high-dimensional datasets. The use of metaTP is anticipated to support researchers in addressing microbiota-related biological inquiries and improving the accessibility and interpretation of microbiota RNA-Seq data.</p><p><strong>Conclusions: </strong>We have created a conda package to integrate the tools into our pipeline, making it a flexible and versatile tool for handling meta-transcriptomic sequencing data. The metaTP pipeline is freely available at: https://github.com/nanbei45/metaTP .</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"111"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12034179/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-025-06137-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The accessibility of sequencing technologies has enabled meta-transcriptomic studies to provide a deeper understanding of microbial ecology at the transcriptional level. Analyzing omics data involves multiple steps that require the use of various bioinformatics tools. With the increasing availability of public microbiome datasets, conducting meta-analyses can reveal new insights into microbiome activity. However, the reproducibility of data is often compromised due to variations in processing methods for sample omics data. Therefore, it is essential to develop efficient analytical workflows that ensure repeatability, reproducibility, and the traceability of results in microbiome research.
Results: We developed metaTP, a pipeline that integrates bioinformatics tools for analyzing meta-transcriptomic data comprehensively. The pipeline includes quality control, non-coding RNA removal, transcript expression quantification, differential gene expression analysis, functional annotation, and co-expression network analysis. To quantify mRNA expression, we rely on reference indexes built using protein-coding sequences, which help overcome the limitations of database analysis. Additionally, metaTP provides a function for calculating the topological properties of gene co-expression networks, offering an intuitive explanation for correlated gene sets in high-dimensional datasets. The use of metaTP is anticipated to support researchers in addressing microbiota-related biological inquiries and improving the accessibility and interpretation of microbiota RNA-Seq data.
Conclusions: We have created a conda package to integrate the tools into our pipeline, making it a flexible and versatile tool for handling meta-transcriptomic sequencing data. The metaTP pipeline is freely available at: https://github.com/nanbei45/metaTP .
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.