STAT3 induces amygdala apoptosis by regulating the expression of stathmin in the rat model of posttraumatic stress disorder.

IF 1.5 4区 医学 Q4 NEUROSCIENCES
Wenqiang Liu, Anqi Liu, Shengxue Yu, Yufei Wang, Wei Shan
{"title":"STAT3 induces amygdala apoptosis by regulating the expression of stathmin in the rat model of posttraumatic stress disorder.","authors":"Wenqiang Liu, Anqi Liu, Shengxue Yu, Yufei Wang, Wei Shan","doi":"10.5114/fn.2024.140830","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Stathmin, recognised as the protein associated with the disassembly of microtubules, plays a vital role in the modulation of human fear as well as anxiety responses. However, it is unclear whether stathmin regulates the specific mechanism of disruption of fear-associated memory resulting from posttraumatic stress disorder (PTSD). This study aims to observe the impact of stathmin on deficit in fear-based memory during PTSD and investigate the underlying mechanisms involved, in order to establish an empirical foundation for elucidating the molecular mechanisms underlying the pathogenesis of PTSD.</p><p><strong>Material and methods: </strong>We used an single prolonged stress (SPS) protocol to induce the PTSD in the rat model. Open field test and forced swimming test were used to examine the anxious and fearful behaviours exhibited by the rats. STAT3/stathmin signalling-related expressions were assessed through immunofluorescence, immunohistochemical, RT-qPCR and Western blotting. Stathmin and STAT3 binding activity was detected by molecular docking. Amygdala apoptosis was detected by TUNEL staining.</p><p><strong>Results: </strong>In this study, while stathmin gene expression in amygdala was significantly downregulated, after 7 days of SPS, activation of STAT3 was observed in the rats' amygdala, accompanied by a notable increase in the apoptosis rate. Consequently, the rats exhibited heightened fear and anxiety responses. However, the above results were reversed after overexpression of the stathmin gene. In addition, following the administration of the STAT3 inhibitor, WP1066, there was a notable reduction in the apoptosis rate, leading to decreased levels of fear and anxiety in rats exposed to SPS. In rats exposed to SPS, administered WP1066, and injected with adenovirus expressing stathmin-targeted siRNA into the amygdala to make the inhibition of stathmin expression partially counteracted the protective effect of WP1066.</p><p><strong>Conclusions: </strong>The findings above suggest that SPS could potentially modulate the stathmin gene's expression by activating the STAT3 pathway, subsequently leading to apoptosis in amygdala cells. This sequence of events ultimately contributes to the PTSD rat model fear memory impairment.</p>","PeriodicalId":12370,"journal":{"name":"Folia neuropathologica","volume":"63 1","pages":"87-99"},"PeriodicalIF":1.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Folia neuropathologica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5114/fn.2024.140830","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Stathmin, recognised as the protein associated with the disassembly of microtubules, plays a vital role in the modulation of human fear as well as anxiety responses. However, it is unclear whether stathmin regulates the specific mechanism of disruption of fear-associated memory resulting from posttraumatic stress disorder (PTSD). This study aims to observe the impact of stathmin on deficit in fear-based memory during PTSD and investigate the underlying mechanisms involved, in order to establish an empirical foundation for elucidating the molecular mechanisms underlying the pathogenesis of PTSD.

Material and methods: We used an single prolonged stress (SPS) protocol to induce the PTSD in the rat model. Open field test and forced swimming test were used to examine the anxious and fearful behaviours exhibited by the rats. STAT3/stathmin signalling-related expressions were assessed through immunofluorescence, immunohistochemical, RT-qPCR and Western blotting. Stathmin and STAT3 binding activity was detected by molecular docking. Amygdala apoptosis was detected by TUNEL staining.

Results: In this study, while stathmin gene expression in amygdala was significantly downregulated, after 7 days of SPS, activation of STAT3 was observed in the rats' amygdala, accompanied by a notable increase in the apoptosis rate. Consequently, the rats exhibited heightened fear and anxiety responses. However, the above results were reversed after overexpression of the stathmin gene. In addition, following the administration of the STAT3 inhibitor, WP1066, there was a notable reduction in the apoptosis rate, leading to decreased levels of fear and anxiety in rats exposed to SPS. In rats exposed to SPS, administered WP1066, and injected with adenovirus expressing stathmin-targeted siRNA into the amygdala to make the inhibition of stathmin expression partially counteracted the protective effect of WP1066.

Conclusions: The findings above suggest that SPS could potentially modulate the stathmin gene's expression by activating the STAT3 pathway, subsequently leading to apoptosis in amygdala cells. This sequence of events ultimately contributes to the PTSD rat model fear memory impairment.

STAT3通过调节stathmin的表达诱导创伤后应激障碍大鼠杏仁核凋亡。
Stathmin被认为是与微管分解相关的蛋白质,在调节人类的恐惧和焦虑反应中起着至关重要的作用。然而,尚不清楚安定素是否调节创伤后应激障碍(PTSD)导致的恐惧相关记忆破坏的具体机制。本研究旨在观察安定素对PTSD患者恐惧记忆缺失的影响,并探讨其机制,为阐明PTSD发病机制的分子机制奠定经验基础。材料和方法:采用单次延长应激(SPS)方案诱导创伤后应激障碍大鼠模型。采用野外实验和强迫游泳实验对大鼠表现出的焦虑和恐惧行为进行观察。通过免疫荧光、免疫组织化学、RT-qPCR和Western blotting检测STAT3/stathmin信号相关表达。通过分子对接检测Stathmin和STAT3的结合活性。TUNEL染色检测杏仁核凋亡。结果:在本研究中,在抑制素基因在杏仁核中表达明显下调的同时,在SPS治疗7天后,在大鼠杏仁核中观察到STAT3的激活,同时细胞凋亡率明显升高。因此,大鼠表现出高度的恐惧和焦虑反应。然而,在过表达安定素基因后,上述结果被逆转。此外,在施用STAT3抑制剂WP1066后,暴露于SPS的大鼠的细胞凋亡率显著降低,导致恐惧和焦虑水平下降。在暴露于SPS的大鼠中,给药WP1066,并在杏仁核中注射表达镇静素靶向siRNA的腺病毒,使镇静素表达的抑制部分抵消WP1066的保护作用。结论:以上研究结果提示,SPS可能通过激活STAT3通路,调控STAT3基因的表达,从而导致杏仁核细胞凋亡。这一系列事件最终导致了创伤后应激障碍大鼠模型的恐惧记忆障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Folia neuropathologica
Folia neuropathologica 医学-病理学
CiteScore
2.50
自引率
5.00%
发文量
38
审稿时长
>12 weeks
期刊介绍: Folia Neuropathologica is an official journal of the Mossakowski Medical Research Centre Polish Academy of Sciences and the Polish Association of Neuropathologists. The journal publishes original articles and reviews that deal with all aspects of clinical and experimental neuropathology and related fields of neuroscience research. The scope of journal includes surgical and experimental pathomorphology, ultrastructure, immunohistochemistry, biochemistry and molecular biology of the nervous tissue. Papers on surgical neuropathology and neuroimaging are also welcome. The reports in other fields relevant to the understanding of human neuropathology might be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信