Ingride Luzio Gaspar, Gaetano Terrone, Giusy Carleo, Lidia Carotenuto, Francesco Miceli, Gabriella De Vita, Maurizio Taglialatela
{"title":"Potassium current inactivation as a novel pathomechanism for KCNQ2 developmental and epileptic encephalopathy.","authors":"Ingride Luzio Gaspar, Gaetano Terrone, Giusy Carleo, Lidia Carotenuto, Francesco Miceli, Gabriella De Vita, Maurizio Taglialatela","doi":"10.1111/epi.18427","DOIUrl":null,"url":null,"abstract":"<p><p>De novo variants in KCNQ2 cause neonatal onset developmental and epileptic encephalopathy (KCNQ2-DEE; Online Mendelian Inheritance in Man #613720), most often by loss-of-function in vitro effects. In this study, we describe a neonatal onset DEE proband carrying a recurrent de novo KCNQ2 variant (c.794C>T; p.A265V) affecting the pore domain of KCNQ2-encoded Kv7.2 subunits. Whole-cell patch-clamp measurement in a mammalian heterologous expression system revealed that, when compared to wild-type Kv7.2 channels, channels containing Kv7.2 A265V subunits displayed (1) reduced maximal current density; (2) decreased voltage-dependence of activation; and (3) an unusual inactivation process, with a 50% current reduction during 1-2-s depolarizing pulses at voltages > 0 mV. These effects were proportional to the number of mutant subunits incorporated in heteromeric channels, being overall less dramatic upon coexpression with Kv7.2 or Kv7.2 + Kv7.3 subunits. These results reveal current inactivation as a novel pathogenetic mechanism for KCNQ2-DEE caused by a recurrent variant affecting a critical pore residue, further highlighting the importance of in vitro functional assessment for a better understanding of disease molecular pathophysiology.</p>","PeriodicalId":11768,"journal":{"name":"Epilepsia","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epilepsia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/epi.18427","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
De novo variants in KCNQ2 cause neonatal onset developmental and epileptic encephalopathy (KCNQ2-DEE; Online Mendelian Inheritance in Man #613720), most often by loss-of-function in vitro effects. In this study, we describe a neonatal onset DEE proband carrying a recurrent de novo KCNQ2 variant (c.794C>T; p.A265V) affecting the pore domain of KCNQ2-encoded Kv7.2 subunits. Whole-cell patch-clamp measurement in a mammalian heterologous expression system revealed that, when compared to wild-type Kv7.2 channels, channels containing Kv7.2 A265V subunits displayed (1) reduced maximal current density; (2) decreased voltage-dependence of activation; and (3) an unusual inactivation process, with a 50% current reduction during 1-2-s depolarizing pulses at voltages > 0 mV. These effects were proportional to the number of mutant subunits incorporated in heteromeric channels, being overall less dramatic upon coexpression with Kv7.2 or Kv7.2 + Kv7.3 subunits. These results reveal current inactivation as a novel pathogenetic mechanism for KCNQ2-DEE caused by a recurrent variant affecting a critical pore residue, further highlighting the importance of in vitro functional assessment for a better understanding of disease molecular pathophysiology.
期刊介绍:
Epilepsia is the leading, authoritative source for innovative clinical and basic science research for all aspects of epilepsy and seizures. In addition, Epilepsia publishes critical reviews, opinion pieces, and guidelines that foster understanding and aim to improve the diagnosis and treatment of people with seizures and epilepsy.