Potassium current inactivation as a novel pathomechanism for KCNQ2 developmental and epileptic encephalopathy.

IF 6.6 1区 医学 Q1 CLINICAL NEUROLOGY
Epilepsia Pub Date : 2025-04-28 DOI:10.1111/epi.18427
Ingride Luzio Gaspar, Gaetano Terrone, Giusy Carleo, Lidia Carotenuto, Francesco Miceli, Gabriella De Vita, Maurizio Taglialatela
{"title":"Potassium current inactivation as a novel pathomechanism for KCNQ2 developmental and epileptic encephalopathy.","authors":"Ingride Luzio Gaspar, Gaetano Terrone, Giusy Carleo, Lidia Carotenuto, Francesco Miceli, Gabriella De Vita, Maurizio Taglialatela","doi":"10.1111/epi.18427","DOIUrl":null,"url":null,"abstract":"<p><p>De novo variants in KCNQ2 cause neonatal onset developmental and epileptic encephalopathy (KCNQ2-DEE; Online Mendelian Inheritance in Man #613720), most often by loss-of-function in vitro effects. In this study, we describe a neonatal onset DEE proband carrying a recurrent de novo KCNQ2 variant (c.794C>T; p.A265V) affecting the pore domain of KCNQ2-encoded Kv7.2 subunits. Whole-cell patch-clamp measurement in a mammalian heterologous expression system revealed that, when compared to wild-type Kv7.2 channels, channels containing Kv7.2 A265V subunits displayed (1) reduced maximal current density; (2) decreased voltage-dependence of activation; and (3) an unusual inactivation process, with a 50% current reduction during 1-2-s depolarizing pulses at voltages > 0 mV. These effects were proportional to the number of mutant subunits incorporated in heteromeric channels, being overall less dramatic upon coexpression with Kv7.2 or Kv7.2 + Kv7.3 subunits. These results reveal current inactivation as a novel pathogenetic mechanism for KCNQ2-DEE caused by a recurrent variant affecting a critical pore residue, further highlighting the importance of in vitro functional assessment for a better understanding of disease molecular pathophysiology.</p>","PeriodicalId":11768,"journal":{"name":"Epilepsia","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epilepsia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/epi.18427","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

De novo variants in KCNQ2 cause neonatal onset developmental and epileptic encephalopathy (KCNQ2-DEE; Online Mendelian Inheritance in Man #613720), most often by loss-of-function in vitro effects. In this study, we describe a neonatal onset DEE proband carrying a recurrent de novo KCNQ2 variant (c.794C>T; p.A265V) affecting the pore domain of KCNQ2-encoded Kv7.2 subunits. Whole-cell patch-clamp measurement in a mammalian heterologous expression system revealed that, when compared to wild-type Kv7.2 channels, channels containing Kv7.2 A265V subunits displayed (1) reduced maximal current density; (2) decreased voltage-dependence of activation; and (3) an unusual inactivation process, with a 50% current reduction during 1-2-s depolarizing pulses at voltages > 0 mV. These effects were proportional to the number of mutant subunits incorporated in heteromeric channels, being overall less dramatic upon coexpression with Kv7.2 or Kv7.2 + Kv7.3 subunits. These results reveal current inactivation as a novel pathogenetic mechanism for KCNQ2-DEE caused by a recurrent variant affecting a critical pore residue, further highlighting the importance of in vitro functional assessment for a better understanding of disease molecular pathophysiology.

钾电流失活作为KCNQ2发育性和癫痫性脑病的新病理机制。
KCNQ2的新生变异导致新生儿发病性发育性和癫痫性脑病(KCNQ2- dee;在线孟德尔遗传在人#613720),最常见的是体外功能丧失的影响。在这项研究中,我们描述了一个新生儿发病的DEE先证携带复发性新生KCNQ2变异(c.794C >t;p.A265V)影响kcnq2编码的Kv7.2亚基的孔结构域。哺乳动物异种表达系统的全细胞膜片钳测量显示,与野生型Kv7.2通道相比,含有Kv7.2 A265V亚基的通道显示出(1)最大电流密度降低;(2)激活的电压依赖性降低;(3)不寻常的失活过程,在1-2秒的去极化脉冲中,电压为100 - 100 mV,电流降低50%。这些影响与异质通道中突变亚基的数量成正比,总体上与Kv7.2或Kv7.2 + Kv7.3亚基共表达时不那么显著。这些结果揭示了KCNQ2-DEE的失活是一种新的发病机制,这种机制是由影响关键孔残基的复发性变异引起的,进一步强调了体外功能评估对于更好地了解疾病分子病理生理的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Epilepsia
Epilepsia 医学-临床神经学
CiteScore
10.90
自引率
10.70%
发文量
319
审稿时长
2-4 weeks
期刊介绍: Epilepsia is the leading, authoritative source for innovative clinical and basic science research for all aspects of epilepsy and seizures. In addition, Epilepsia publishes critical reviews, opinion pieces, and guidelines that foster understanding and aim to improve the diagnosis and treatment of people with seizures and epilepsy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信