{"title":"PtWAVE: a high-sensitive deconvolution software of sequencing trace for the detection of large indels in genome editing.","authors":"Kazuki Nakamae, Saya Ide, Nagaki Ohnuki, Yoshiko Nakagawa, Keisuke Okuhara, Hidemasa Bono","doi":"10.1186/s12859-025-06139-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Tracking of Insertions and DEletions (TIDE) analysis, which computationally deconvolves capillary sequencing data derived from the DNA of bulk or clonal cell populations to estimate the efficiency of targeted mutagenesis by programmable nucleases, has played a significant role in the field of genome editing. However, the detection range covered by conventional TIDE analysis is limited. Range extension for deconvolution is required to detect larger deletions and insertions (indels) derived from genome editing in TIDE analysis. However, extending the deconvolution range introduces uncertainty into the deconvolution process. Moreover, the accuracy and sensitivity of TIDE analysis tools for large deletions (> 50 bp) remain poorly understood.</p><p><strong>Results: </strong>In this study, we introduced a new software called PtWAVE that can detect a wide range of indel sizes, up to 200 bp. PtWAVE also offers options for variable selection and fitting algorithms to prevent uncertainties in the model. We evaluated the performance of PtWAVE by using in vitro capillary sequencing data that mimicked DNA sequencing, including large deletions. Furthermore, we confirmed that PtWAVE can stably analyze trace sequencing data derived from actual genome-edited samples.</p><p><strong>Conclusions: </strong>PtWAVE demonstrated superior accuracy and sensitivity compared to the existing TIDE analysis tools for DNA samples, including large deletions. PtWAVE can accelerate genome editing applications in organisms and cell types in which large deletions often occur when programmable nucleases are applied.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"114"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12039204/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-025-06139-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Tracking of Insertions and DEletions (TIDE) analysis, which computationally deconvolves capillary sequencing data derived from the DNA of bulk or clonal cell populations to estimate the efficiency of targeted mutagenesis by programmable nucleases, has played a significant role in the field of genome editing. However, the detection range covered by conventional TIDE analysis is limited. Range extension for deconvolution is required to detect larger deletions and insertions (indels) derived from genome editing in TIDE analysis. However, extending the deconvolution range introduces uncertainty into the deconvolution process. Moreover, the accuracy and sensitivity of TIDE analysis tools for large deletions (> 50 bp) remain poorly understood.
Results: In this study, we introduced a new software called PtWAVE that can detect a wide range of indel sizes, up to 200 bp. PtWAVE also offers options for variable selection and fitting algorithms to prevent uncertainties in the model. We evaluated the performance of PtWAVE by using in vitro capillary sequencing data that mimicked DNA sequencing, including large deletions. Furthermore, we confirmed that PtWAVE can stably analyze trace sequencing data derived from actual genome-edited samples.
Conclusions: PtWAVE demonstrated superior accuracy and sensitivity compared to the existing TIDE analysis tools for DNA samples, including large deletions. PtWAVE can accelerate genome editing applications in organisms and cell types in which large deletions often occur when programmable nucleases are applied.
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.