Breakthroughs and challenges of organoid models for assessing cancer immunotherapy: a cutting-edge tool for advancing personalised treatments.

IF 7 2区 生物学 Q1 CELL BIOLOGY
Qian Wang, Fangwei Yuan, Xianglin Zuo, Ming Li
{"title":"Breakthroughs and challenges of organoid models for assessing cancer immunotherapy: a cutting-edge tool for advancing personalised treatments.","authors":"Qian Wang, Fangwei Yuan, Xianglin Zuo, Ming Li","doi":"10.1038/s41420-025-02505-w","DOIUrl":null,"url":null,"abstract":"<p><p>Organoid models are powerful tools for evaluating cancer immunotherapy that provide a more accurate representation of the tumour microenvironment (TME) and immune responses than traditional models. This review focuses on the latest advancements in organoid technologies, including immune cell co-culture, 3D bioprinting, and microfluidic systems, which enhance the modelling of TME and facilitate the assessment of immune therapies such as immune checkpoint inhibitors (ICIs), CAR-T therapies, and oncolytic viruses. Although these models have great potential in personalised cancer treatment, challenges persist in immune cell diversity, long-term culture stability, and reproducibility. Future developments integrating artificial intelligence (AI), multi-omics, and high-throughput platforms are expected to improve the predictive power of organoid models and accelerate the clinical translation of immunotherapy.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"11 1","pages":"222"},"PeriodicalIF":7.0000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12059183/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-025-02505-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Organoid models are powerful tools for evaluating cancer immunotherapy that provide a more accurate representation of the tumour microenvironment (TME) and immune responses than traditional models. This review focuses on the latest advancements in organoid technologies, including immune cell co-culture, 3D bioprinting, and microfluidic systems, which enhance the modelling of TME and facilitate the assessment of immune therapies such as immune checkpoint inhibitors (ICIs), CAR-T therapies, and oncolytic viruses. Although these models have great potential in personalised cancer treatment, challenges persist in immune cell diversity, long-term culture stability, and reproducibility. Future developments integrating artificial intelligence (AI), multi-omics, and high-throughput platforms are expected to improve the predictive power of organoid models and accelerate the clinical translation of immunotherapy.

评估癌症免疫治疗的类器官模型的突破和挑战:推进个性化治疗的前沿工具。
类器官模型是评估癌症免疫治疗的有力工具,它提供了比传统模型更准确的肿瘤微环境(TME)和免疫反应的表征。本文综述了类器官技术的最新进展,包括免疫细胞共培养、3D生物打印和微流体系统,这些技术增强了TME的建模,并促进了免疫疗法(如免疫检查点抑制剂(ICIs)、CAR-T疗法和溶瘤病毒)的评估。尽管这些模型在个体化癌症治疗方面具有巨大潜力,但在免疫细胞多样性、长期培养稳定性和可重复性方面仍然存在挑战。人工智能(AI)、多组学和高通量平台的未来发展有望提高类器官模型的预测能力,加速免疫治疗的临床转化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Death Discovery
Cell Death Discovery Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
8.30
自引率
1.40%
发文量
468
审稿时长
9 weeks
期刊介绍: Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary. Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信