Aleksandra Babicheva, Ibrahim Elmadbouh, Shanshan Song, Michael A Thompson, Ryan Powers, Pritesh P Jain, Amin Izadi, Jiyuan Chen, Lauren Yung, Sophia Parmisano, Cole Paquin, Wei-Ting Wang, Yuqin Chen, Ting Wang, Mona Alotaibi, John Y-J Shyy, Patricia A Thistlethwaite, Jian Wang, Ayako Makino, Y S Prakash, Christina M Pabelick, Jason X-J Yuan
{"title":"Store-operated Ca<sup>2+</sup> entry is involved in endothelium-to-mesenchymal transition in lung vascular endothelial cells.","authors":"Aleksandra Babicheva, Ibrahim Elmadbouh, Shanshan Song, Michael A Thompson, Ryan Powers, Pritesh P Jain, Amin Izadi, Jiyuan Chen, Lauren Yung, Sophia Parmisano, Cole Paquin, Wei-Ting Wang, Yuqin Chen, Ting Wang, Mona Alotaibi, John Y-J Shyy, Patricia A Thistlethwaite, Jian Wang, Ayako Makino, Y S Prakash, Christina M Pabelick, Jason X-J Yuan","doi":"10.1152/ajplung.00400.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Endothelial-to-mesenchymal transition (EndMT) is a biological process that converts endothelial cells to mesenchymal cells with increased proliferative and migrative abilities. EndMT has been implicated in the development of pulmonary vascular remodeling in pulmonary arterial hypertension (PAH), a fatal and progressive lung vascular disease. Transforming growth factor β<sub>1</sub> (TGF-β<sub>1</sub>), an inflammatory cytokine, is known to induce EndMT in many types of endothelial cells including lung vascular endothelial cells (LVECs). An increase in cytosolic free Ca<sup>2+</sup> concentration ([Ca<sup>2+</sup>]<sub>cyt</sub>) is a major stimulus for cellular proliferation and phenotypic transition, but it is unknown whether Ca<sup>2+</sup> signaling is involved in EndMT. In this study, we tested the hypothesis that TGF-β<sub>1</sub>-induced EndMT in human LVEC is Ca<sup>2+</sup>-dependent. Treatment of LVEC with TGF-β<sub>1</sub> for 5-7 days resulted in increase in SNAI1/2 expression, induction of EndMT, upregulation of STIM/Orai1, and enhancement of store-operated Ca<sup>2+</sup> entry (SOCE). Removal (or chelation) of extracellular or intracellular Ca<sup>2+</sup> with EGTA or BAPTA-AM, respectively, abolished EndMT in response to TGF-β<sub>1</sub>. Moreover, EGTA diminished TGF-β<sub>1</sub>-induced increase in SNAI in a dose-dependent manner. Knockdown of either STIM1 or Orai1 was sufficient to prevent TGF-β-mediated increase in SNAI1/2 and EndMT but did not rescue the continuous adherent junctions. Blockade of Orai1 channels by AnCoA4 inhibited TGF-β-mediated EndMT and restored PECAM1-positive continuous adherent junctions. In conclusion, intracellular Ca<sup>2+</sup> signaling plays a critical role in TGF-β-associated EndMT through enhanced SOCE and STIM1-Orai1 interaction. Thus, targeting Ca<sup>2+</sup> signaling pathways regulating EndMT may be a novel therapeutic approach to treat PAH and other forms of precapillary pulmonary hypertension.<b>NEW & NOTEWORTHY</b> EndMT has been reported to contribute to the pathogenesis of PAH. In this study, we aimed to determine the role of Ca<sup>2+</sup> signaling in the development of EndMT in human lung vascular endothelial cells. Our data suggest that TGF-β<sub>1</sub> requires store-operated Ca<sup>2+</sup> entry through STIM1/Orai channels to induce SNAI-mediated EndMT. For the first time, we demonstrated that TGF-β<sub>1</sub>-induced EndMT is a Ca<sup>2+</sup>-dependent event, whereas inhibition of STIM1/Orai interaction attenuated EndMT in response to TGF-β<sub>1</sub>.</p>","PeriodicalId":7593,"journal":{"name":"American journal of physiology. Lung cellular and molecular physiology","volume":" ","pages":"L844-L857"},"PeriodicalIF":3.6000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12169631/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Lung cellular and molecular physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajplung.00400.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Endothelial-to-mesenchymal transition (EndMT) is a biological process that converts endothelial cells to mesenchymal cells with increased proliferative and migrative abilities. EndMT has been implicated in the development of pulmonary vascular remodeling in pulmonary arterial hypertension (PAH), a fatal and progressive lung vascular disease. Transforming growth factor β1 (TGF-β1), an inflammatory cytokine, is known to induce EndMT in many types of endothelial cells including lung vascular endothelial cells (LVECs). An increase in cytosolic free Ca2+ concentration ([Ca2+]cyt) is a major stimulus for cellular proliferation and phenotypic transition, but it is unknown whether Ca2+ signaling is involved in EndMT. In this study, we tested the hypothesis that TGF-β1-induced EndMT in human LVEC is Ca2+-dependent. Treatment of LVEC with TGF-β1 for 5-7 days resulted in increase in SNAI1/2 expression, induction of EndMT, upregulation of STIM/Orai1, and enhancement of store-operated Ca2+ entry (SOCE). Removal (or chelation) of extracellular or intracellular Ca2+ with EGTA or BAPTA-AM, respectively, abolished EndMT in response to TGF-β1. Moreover, EGTA diminished TGF-β1-induced increase in SNAI in a dose-dependent manner. Knockdown of either STIM1 or Orai1 was sufficient to prevent TGF-β-mediated increase in SNAI1/2 and EndMT but did not rescue the continuous adherent junctions. Blockade of Orai1 channels by AnCoA4 inhibited TGF-β-mediated EndMT and restored PECAM1-positive continuous adherent junctions. In conclusion, intracellular Ca2+ signaling plays a critical role in TGF-β-associated EndMT through enhanced SOCE and STIM1-Orai1 interaction. Thus, targeting Ca2+ signaling pathways regulating EndMT may be a novel therapeutic approach to treat PAH and other forms of precapillary pulmonary hypertension.NEW & NOTEWORTHY EndMT has been reported to contribute to the pathogenesis of PAH. In this study, we aimed to determine the role of Ca2+ signaling in the development of EndMT in human lung vascular endothelial cells. Our data suggest that TGF-β1 requires store-operated Ca2+ entry through STIM1/Orai channels to induce SNAI-mediated EndMT. For the first time, we demonstrated that TGF-β1-induced EndMT is a Ca2+-dependent event, whereas inhibition of STIM1/Orai interaction attenuated EndMT in response to TGF-β1.
期刊介绍:
The American Journal of Physiology-Lung Cellular and Molecular Physiology publishes original research covering the broad scope of molecular, cellular, and integrative aspects of normal and abnormal function of cells and components of the respiratory system. Areas of interest include conducting airways, pulmonary circulation, lung endothelial and epithelial cells, the pleura, neuroendocrine and immunologic cells in the lung, neural cells involved in control of breathing, and cells of the diaphragm and thoracic muscles. The processes to be covered in the Journal include gas-exchange, metabolic control at the cellular level, intracellular signaling, gene expression, genomics, macromolecules and their turnover, cell-cell and cell-matrix interactions, cell motility, secretory mechanisms, membrane function, surfactant, matrix components, mucus and lining materials, lung defenses, macrophage function, transport of salt, water and protein, development and differentiation of the respiratory system, and response to the environment.