Clinical and molecular landscape of post-traumatic osteoarthritis.

IF 2.8 4区 医学 Q3 CELL BIOLOGY
Kyohei Takase, Patrick C McCulloch, Jasper H N Yik, Dominik R Haudenschild
{"title":"Clinical and molecular landscape of post-traumatic osteoarthritis.","authors":"Kyohei Takase, Patrick C McCulloch, Jasper H N Yik, Dominik R Haudenschild","doi":"10.1080/03008207.2025.2490797","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoarthritis (OA) is a degenerative joint disease characterized by cartilage breakdown, chronic pain, and disability. Post-traumatic osteoarthritis (PTOA), a secondary form of OA, arises from joint injuries and consistently accounts for a proportion of symptomatic cases. Unlike primary OA, PTOA has a well-defined initiation point, presenting an opportunity for early intervention. Over the past two decades, research has shifted from a cartilage-centric view to a broader understanding of OA as a multifaceted disease involving inflammation, oxidative stress, and complex molecular crosstalk between chondrocytes, synoviocytes, osteocytes, and immune cells. Key inflammatory mediators, such as IL-1β, IL-6, TNF-α, and Wnt/β-catenin signaling, drive disease progression. Advances in imaging, biomarker discovery, and animal models have provided insights into early disease mechanisms. However, gaps remain in understanding the molecular events that trigger PTOA onset, the interplay between joint tissues, and the identification of reliable early biomarkers. Delayed diagnosis, lack of disease-modifying therapies, and OA's complexity remain critical barriers. Future directions should focus on precision medicine integrating biomarkers, imaging, and artificial intelligence for early diagnosis and risk stratification. Emerging regenerative and gene therapies, while promising, would benefit from moving beyond single-pathway targeting, as OA's multifaceted nature makes a combination approach desirable to simultaneously address inflammation, oxidative stress, cartilage matrix degradation, and tissue repair. Multidisciplinary collaborations between clinicians, molecular biologists, and bioengineers are essential to translating discoveries into effective interventions. A paradigm shift toward early, personalized treatment strategies is necessary to improve long-term outcomes in PTOA and OA management.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":" ","pages":"1-7"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Connective Tissue Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03008207.2025.2490797","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Osteoarthritis (OA) is a degenerative joint disease characterized by cartilage breakdown, chronic pain, and disability. Post-traumatic osteoarthritis (PTOA), a secondary form of OA, arises from joint injuries and consistently accounts for a proportion of symptomatic cases. Unlike primary OA, PTOA has a well-defined initiation point, presenting an opportunity for early intervention. Over the past two decades, research has shifted from a cartilage-centric view to a broader understanding of OA as a multifaceted disease involving inflammation, oxidative stress, and complex molecular crosstalk between chondrocytes, synoviocytes, osteocytes, and immune cells. Key inflammatory mediators, such as IL-1β, IL-6, TNF-α, and Wnt/β-catenin signaling, drive disease progression. Advances in imaging, biomarker discovery, and animal models have provided insights into early disease mechanisms. However, gaps remain in understanding the molecular events that trigger PTOA onset, the interplay between joint tissues, and the identification of reliable early biomarkers. Delayed diagnosis, lack of disease-modifying therapies, and OA's complexity remain critical barriers. Future directions should focus on precision medicine integrating biomarkers, imaging, and artificial intelligence for early diagnosis and risk stratification. Emerging regenerative and gene therapies, while promising, would benefit from moving beyond single-pathway targeting, as OA's multifaceted nature makes a combination approach desirable to simultaneously address inflammation, oxidative stress, cartilage matrix degradation, and tissue repair. Multidisciplinary collaborations between clinicians, molecular biologists, and bioengineers are essential to translating discoveries into effective interventions. A paradigm shift toward early, personalized treatment strategies is necessary to improve long-term outcomes in PTOA and OA management.

创伤后骨关节炎的临床和分子特征。
骨关节炎(OA)是一种以软骨破裂、慢性疼痛和残疾为特征的退行性关节疾病。创伤后骨关节炎(PTOA)是OA的一种继发性形式,由关节损伤引起,一直占有症状病例的比例。与原发性OA不同,pta有明确的起始点,为早期干预提供了机会。在过去的二十年中,研究已经从以软骨为中心的观点转变为对OA的更广泛理解,认为OA是一种涉及炎症、氧化应激和软骨细胞、滑膜细胞、骨细胞和免疫细胞之间复杂分子相互作用的多层面疾病。关键的炎症介质,如IL-1β、IL-6、TNF-α和Wnt/β-catenin信号传导,驱动疾病进展。成像、生物标志物发现和动物模型的进展为早期疾病机制提供了见解。然而,在了解触发PTOA发病的分子事件、关节组织之间的相互作用以及可靠的早期生物标志物的鉴定方面仍然存在空白。延迟诊断、缺乏疾病改善疗法和OA的复杂性仍然是关键障碍。未来的方向应该集中在整合生物标志物、成像和人工智能的精准医学上,以进行早期诊断和风险分层。新兴的再生和基因疗法,虽然前景看好,但将受益于超越单一途径的靶向治疗,因为骨性关节炎的多面性使得需要同时解决炎症、氧化应激、软骨基质降解和组织修复的组合方法。临床医生、分子生物学家和生物工程师之间的多学科合作对于将发现转化为有效的干预措施至关重要。为了改善pta和OA管理的长期结果,有必要向早期个性化治疗策略转变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Connective Tissue Research
Connective Tissue Research 生物-细胞生物学
CiteScore
6.60
自引率
3.40%
发文量
37
审稿时长
2 months
期刊介绍: The aim of Connective Tissue Research is to present original and significant research in all basic areas of connective tissue and matrix biology. The journal also provides topical reviews and, on occasion, the proceedings of conferences in areas of special interest at which original work is presented. The journal supports an interdisciplinary approach; we present a variety of perspectives from different disciplines, including Biochemistry Cell and Molecular Biology Immunology Structural Biology Biophysics Biomechanics Regenerative Medicine The interests of the Editorial Board are to understand, mechanistically, the structure-function relationships in connective tissue extracellular matrix, and its associated cells, through interpretation of sophisticated experimentation using state-of-the-art technologies that include molecular genetics, imaging, immunology, biomechanics and tissue engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信