{"title":"Hederacoside C Modulates EGF-Induced MUC5AC Mucin Gene Expression by Regulating the MAPK Signaling Pathway in Human Airway Epithelial Cells.","authors":"Rajib Hossain, Md Solayman Hossain, Hyun Jae Lee, Choong Jae Lee","doi":"10.4062/biomolther.2025.054","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to evaluate the potential of hederacoside C, an active compound isolated from <i>Hedera helix</i>, which has been used for managing inflammatory respiratory diseases, in attenuating epidermal growth factor (EGF)-induced airway MUC5AC mucin gene expression. Human pulmonary mucoepidermoid NCI-H292 cells were pretreated with hederacoside C for 30 min and subsequently stimulated with EGF for 24 h. The study also examined the effect of hederacoside C on the EGF-induced mitogen-activated protein kinase (MAPK) signaling pathway. The results showed that hederacoside C inhibited MUC5AC mucin mRNA expression and the production of mucous glycoproteins by suppressing the phosphorylation of the EGF receptor (EGFR), as well as the phosphorylation of MAPK/extracellular signal-regulated kinase (ERK) 1/2 (MEK1/2), p38 MAPK, ERK 1/2 (p44/42), and the nuclear expression of specificity protein-1 (Sp1). These findings suggest that hederacoside C has the potential to reduce EGF-induced mucin gene expression by inhibiting the EGFR-MAPK-Sp1 signaling pathway in NCI-H292 cells.</p>","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":"33 3","pages":"510-517"},"PeriodicalIF":3.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12059360/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules & Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4062/biomolther.2025.054","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to evaluate the potential of hederacoside C, an active compound isolated from Hedera helix, which has been used for managing inflammatory respiratory diseases, in attenuating epidermal growth factor (EGF)-induced airway MUC5AC mucin gene expression. Human pulmonary mucoepidermoid NCI-H292 cells were pretreated with hederacoside C for 30 min and subsequently stimulated with EGF for 24 h. The study also examined the effect of hederacoside C on the EGF-induced mitogen-activated protein kinase (MAPK) signaling pathway. The results showed that hederacoside C inhibited MUC5AC mucin mRNA expression and the production of mucous glycoproteins by suppressing the phosphorylation of the EGF receptor (EGFR), as well as the phosphorylation of MAPK/extracellular signal-regulated kinase (ERK) 1/2 (MEK1/2), p38 MAPK, ERK 1/2 (p44/42), and the nuclear expression of specificity protein-1 (Sp1). These findings suggest that hederacoside C has the potential to reduce EGF-induced mucin gene expression by inhibiting the EGFR-MAPK-Sp1 signaling pathway in NCI-H292 cells.
期刊介绍:
Biomolecules & Therapeutics (Biomolecules & Therapeutics) (Print ISSN 1976-9148, Online ISSN 2005-4483) is an international, peer-reviewed, open access journal that covers pharmacological and toxicological fields related to bioactive molecules and therapeutics. It was launched in 1993 as "The Journal of Applied Pharmacology (ISSN 1225-6110)", and renamed "Biomolecules & Therapeutics" (Biomol Ther: abbreviated form) in 2008 (Volume 16, No. 1). It is published bimonthly in January, March, May, July, September and November. All manuscripts should be creative, informative, and contribute to the development of new drugs. Articles in the following categories are published: review articles and research articles.