{"title":"Molecular Understanding of Polyaniline in Imidazolium-Based Ionic Liquid and Water Mixtures: A Molecular Dynamics Simulation Study","authors":"Chaitanya Dharmendrakumar Gandhi, Praveenkumar Sappidi","doi":"10.1002/cphc.202500068","DOIUrl":null,"url":null,"abstract":"<p>Monitoring interactive influence of cations and anions is inevitable for the development of conductive membranes using polyaniline (PANI). Herein, emeraldine base (EB) and emeraldine salt (ES) forms of PANI structural properties are understood in different imidazolium ionic liquid–water mixtures using molecular dynamics (MD) simulations. The conformational and structural properties of PANI using the combinations of two cations (1-ethyl-3-methylimidazolium [EMIM]<sup>+</sup> and 1-butyl-3-methylimidazolium [BMIM]<sup>+</sup>) and five anions (acetate [ACT]<sup>−</sup>, formate [FRM]<sup>−</sup>, trifluoromethyl-sulfonate [TFS]<sup>−</sup>, benzoate [BEZ]<sup>−</sup>, and nitrate [NO<sub>3</sub>]<sup>−</sup>) are calculated. Based on various structural properties, it is understood that the anions play a dominant interaction with EB or ES compared to cations. Interestingly, it is observed that the radius of gyration shows an increase with [BMIM]<sup>+</sup> and a decrease with [EMIM]<sup>+</sup> with respect to the increasing size of the anion. There is a decrease in van der Waals interaction for ES due to the elongation of the chain when compared to EB. The excess molar volume shows more solvation behavior for ES than EB. Nevertheless, an increase in anion size leads to the favorable solvation of EB and ES. These observations help in the selection of the best combination of ILs for the sustainable designing of polymer membranes and their applications.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":"26 14","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cphc.202500068","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Monitoring interactive influence of cations and anions is inevitable for the development of conductive membranes using polyaniline (PANI). Herein, emeraldine base (EB) and emeraldine salt (ES) forms of PANI structural properties are understood in different imidazolium ionic liquid–water mixtures using molecular dynamics (MD) simulations. The conformational and structural properties of PANI using the combinations of two cations (1-ethyl-3-methylimidazolium [EMIM]+ and 1-butyl-3-methylimidazolium [BMIM]+) and five anions (acetate [ACT]−, formate [FRM]−, trifluoromethyl-sulfonate [TFS]−, benzoate [BEZ]−, and nitrate [NO3]−) are calculated. Based on various structural properties, it is understood that the anions play a dominant interaction with EB or ES compared to cations. Interestingly, it is observed that the radius of gyration shows an increase with [BMIM]+ and a decrease with [EMIM]+ with respect to the increasing size of the anion. There is a decrease in van der Waals interaction for ES due to the elongation of the chain when compared to EB. The excess molar volume shows more solvation behavior for ES than EB. Nevertheless, an increase in anion size leads to the favorable solvation of EB and ES. These observations help in the selection of the best combination of ILs for the sustainable designing of polymer membranes and their applications.
期刊介绍:
ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.