{"title":"Multipolar model and Hirshfeld atom refinement of tetraaquabis(hydrogenmaleato)iron(II).","authors":"Hellen Ferreira Guimarães, Bernardo Lages Rodrigues","doi":"10.1107/S2052520625003403","DOIUrl":null,"url":null,"abstract":"<p><p>A high-resolution charge density study using the Hansen-Coppens multipolar model was performed on tetraaquabis(hydrogenmaleato)iron(II). The experimental electron density was subjected to Bader's topological analysis. Hirshfeld atom refinement and topological analysis of the molecular wavefunction were also conducted. A comparison of the properties obtained under different resolution and acquisition conditions are presented. The performance of these models is evaluated in terms of their ability to achieve bond lengths close to those from neutron diffraction, provide accurate anisotropic displacement parameters and model electron densities precisely, and to determine atomic charges under different experimental and modeling conditions. The structure presents a short intramolecular hydrogen bond, which is found to have a distinct character compared to other interactions, as the hydrogen interacts covalently with two oxygen atoms. Different models were evaluated, each outperforming the others in specific aspects. Overall, the analysis of these models provide deeper insights into electron density distribution and the nature of the interactions present in the structure.</p>","PeriodicalId":7320,"journal":{"name":"Acta crystallographica Section B, Structural science, crystal engineering and materials","volume":" ","pages":"350-362"},"PeriodicalIF":1.3000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12147936/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta crystallographica Section B, Structural science, crystal engineering and materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1107/S2052520625003403","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A high-resolution charge density study using the Hansen-Coppens multipolar model was performed on tetraaquabis(hydrogenmaleato)iron(II). The experimental electron density was subjected to Bader's topological analysis. Hirshfeld atom refinement and topological analysis of the molecular wavefunction were also conducted. A comparison of the properties obtained under different resolution and acquisition conditions are presented. The performance of these models is evaluated in terms of their ability to achieve bond lengths close to those from neutron diffraction, provide accurate anisotropic displacement parameters and model electron densities precisely, and to determine atomic charges under different experimental and modeling conditions. The structure presents a short intramolecular hydrogen bond, which is found to have a distinct character compared to other interactions, as the hydrogen interacts covalently with two oxygen atoms. Different models were evaluated, each outperforming the others in specific aspects. Overall, the analysis of these models provide deeper insights into electron density distribution and the nature of the interactions present in the structure.
期刊介绍:
Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials publishes scientific articles related to the structural science of compounds and materials in the widest sense. Knowledge of the arrangements of atoms, including their temporal variations and dependencies on temperature and pressure, is often the key to understanding physical and chemical phenomena and is crucial for the design of new materials and supramolecular devices. Acta Crystallographica B is the forum for the publication of such contributions. Scientific developments based on experimental studies as well as those based on theoretical approaches, including crystal-structure prediction, structure-property relations and the use of databases of crystal structures, are published.