Haiying Zhang, Yubo Jiang, Jun Song, Shaoqing Wang, Jianhong Lu, Fuxin Wei, Xiu Li
{"title":"Urinary exosomes exacerbate diabetic kidney disease by promoting NLRP3 inflammasome activation via the microRNA-516b-5p/SIRT3/AMPK pathway.","authors":"Haiying Zhang, Yubo Jiang, Jun Song, Shaoqing Wang, Jianhong Lu, Fuxin Wei, Xiu Li","doi":"10.1152/ajpendo.00527.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic kidney disease (DKD) is a severe complication of diabetes mellitus. Urinary exosomal miRNAs play a prominent regulatory role in the pathogenesis of DKD, but the potential mechanisms remain largely unknown. Our research was designed to explain the pathogenesis of urine-derived exosomal microRNA-516b-5p (miR-516b-5p) in the DKD development. Urine-derived exosomes were identified using transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blot. Immunofluorescence staining was used to detect cellular internalization. Quantitative real time-polymerase chain reaction (qRT-PCR) analysis was performed to measure the levels of miR-516b-5p and SIRT3. The secretion of inflammatory cytokines and Caspase-1 activity were evaluated via ELISA and flow cytometry, respectively. Expression of NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome markers and genes associated with the SIRT3/AMPK signaling pathway were measured using Western blot. Bioinformatics tools and dual-luciferase reporter gene assay were used to confirm the correlation between miR-516b-5p and SIRT3. Blood glucose and renal function indexes were determined by the corresponding commercial kits. Hematoxylin and eosin (H&E) staining was exploited to examine the renal pathological changes. MiR-516b-5p was memorably upregulated in HKB-20 cells exposed to DKD-Exo. DKD-Exo introduction led to an increase in Caspase-1 activity, promoted inflammatory response and NLRP3 inflammasome activity, and inactivation of SIRT3/AMPK signaling pathway, which was partially reversed by silencing miR-516b-5p. SIRT3 was identified as a target gene of miR-516b-5p. SIRT3 overexpression reversed the influences of DKD-Exo and miR-516b-5p mimic. In the in vivo model, DKD-Exo exacerbated streptozotocin (STZ)-induced kidney injury through promoting inflammatory response and activating the NLRP3 inflammasome. Urinary exosomal miR-516b-5p plays a key role in DKD by promoting inflammatory response and activating the NLRP3 inflammasome through the SIRT3/AMPK pathway.<b>NEW & NOTEWORTHY</b> Urinary exosomal miR-516b-5p plays a key role in diabetic kidney disease (DKD) by promoting inflammatory response and NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activation through the SIRT3/AMPK pathway.</p>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":" ","pages":"E911-E923"},"PeriodicalIF":4.2000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Endocrinology and metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpendo.00527.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetic kidney disease (DKD) is a severe complication of diabetes mellitus. Urinary exosomal miRNAs play a prominent regulatory role in the pathogenesis of DKD, but the potential mechanisms remain largely unknown. Our research was designed to explain the pathogenesis of urine-derived exosomal microRNA-516b-5p (miR-516b-5p) in the DKD development. Urine-derived exosomes were identified using transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blot. Immunofluorescence staining was used to detect cellular internalization. Quantitative real time-polymerase chain reaction (qRT-PCR) analysis was performed to measure the levels of miR-516b-5p and SIRT3. The secretion of inflammatory cytokines and Caspase-1 activity were evaluated via ELISA and flow cytometry, respectively. Expression of NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome markers and genes associated with the SIRT3/AMPK signaling pathway were measured using Western blot. Bioinformatics tools and dual-luciferase reporter gene assay were used to confirm the correlation between miR-516b-5p and SIRT3. Blood glucose and renal function indexes were determined by the corresponding commercial kits. Hematoxylin and eosin (H&E) staining was exploited to examine the renal pathological changes. MiR-516b-5p was memorably upregulated in HKB-20 cells exposed to DKD-Exo. DKD-Exo introduction led to an increase in Caspase-1 activity, promoted inflammatory response and NLRP3 inflammasome activity, and inactivation of SIRT3/AMPK signaling pathway, which was partially reversed by silencing miR-516b-5p. SIRT3 was identified as a target gene of miR-516b-5p. SIRT3 overexpression reversed the influences of DKD-Exo and miR-516b-5p mimic. In the in vivo model, DKD-Exo exacerbated streptozotocin (STZ)-induced kidney injury through promoting inflammatory response and activating the NLRP3 inflammasome. Urinary exosomal miR-516b-5p plays a key role in DKD by promoting inflammatory response and activating the NLRP3 inflammasome through the SIRT3/AMPK pathway.NEW & NOTEWORTHY Urinary exosomal miR-516b-5p plays a key role in diabetic kidney disease (DKD) by promoting inflammatory response and NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activation through the SIRT3/AMPK pathway.
期刊介绍:
The American Journal of Physiology-Endocrinology and Metabolism publishes original, mechanistic studies on the physiology of endocrine and metabolic systems. Physiological, cellular, and molecular studies in whole animals or humans will be considered. Specific themes include, but are not limited to, mechanisms of hormone and growth factor action; hormonal and nutritional regulation of metabolism, inflammation, microbiome and energy balance; integrative organ cross talk; paracrine and autocrine control of endocrine cells; function and activation of hormone receptors; endocrine or metabolic control of channels, transporters, and membrane function; temporal analysis of hormone secretion and metabolism; and mathematical/kinetic modeling of metabolism. Novel molecular, immunological, or biophysical studies of hormone action are also welcome.