Narasimman Gurusamy, Bandar Muteb H Almalki, Sai Katragadda, James Murray, Robert C Speth, Lisa S Robison
{"title":"Epigenetic regulation by ketone bodies in cardiac diseases and repair.","authors":"Narasimman Gurusamy, Bandar Muteb H Almalki, Sai Katragadda, James Murray, Robert C Speth, Lisa S Robison","doi":"10.1139/cjpp-2024-0270","DOIUrl":null,"url":null,"abstract":"<p><p>Ketone bodies, particularly β-hydroxybutyrate (BHB), play an important role in the epigenetic regulation of gene expression in cardiac tissues, impacting both cardiac health and disease. This review explores the multifaceted influence of ketone bodies on epigenetic mechanisms, including histone acetylation, DNA methylation, ubiquitination, sirtuins activation, and RNA modulation. By acting as endogenous histone deacetylase inhibitors, ketone bodies enhance histone acetylation, thereby promoting the expression of genes involved in antioxidant defenses, anti-inflammatory responses, and metabolic regulation. Furthermore, BHB affects DNA methylation patterns by altering the availability of key metabolites such as S-adenosylmethionine. Ketogenic diet, which elevates BHB levels, has been shown to modulate gene expression, such as increasing FOXO3a and metallothionein 2, and improve cardiac function. This review highlights the therapeutic potential of ketone bodies in managing cardiac diseases through their epigenetic effects, underscoring the need for further research to elucidate the detailed molecular pathways and long-term impacts of these metabolic interventions.</p>","PeriodicalId":9520,"journal":{"name":"Canadian journal of physiology and pharmacology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian journal of physiology and pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1139/cjpp-2024-0270","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Ketone bodies, particularly β-hydroxybutyrate (BHB), play an important role in the epigenetic regulation of gene expression in cardiac tissues, impacting both cardiac health and disease. This review explores the multifaceted influence of ketone bodies on epigenetic mechanisms, including histone acetylation, DNA methylation, ubiquitination, sirtuins activation, and RNA modulation. By acting as endogenous histone deacetylase inhibitors, ketone bodies enhance histone acetylation, thereby promoting the expression of genes involved in antioxidant defenses, anti-inflammatory responses, and metabolic regulation. Furthermore, BHB affects DNA methylation patterns by altering the availability of key metabolites such as S-adenosylmethionine. Ketogenic diet, which elevates BHB levels, has been shown to modulate gene expression, such as increasing FOXO3a and metallothionein 2, and improve cardiac function. This review highlights the therapeutic potential of ketone bodies in managing cardiac diseases through their epigenetic effects, underscoring the need for further research to elucidate the detailed molecular pathways and long-term impacts of these metabolic interventions.
期刊介绍:
Published since 1929, the Canadian Journal of Physiology and Pharmacology is a monthly journal that reports current research in all aspects of physiology, nutrition, pharmacology, and toxicology, contributed by recognized experts and scientists. It publishes symposium reviews and award lectures and occasionally dedicates entire issues or portions of issues to subjects of special interest to its international readership. The journal periodically publishes a “Made In Canada” special section that features invited review articles from internationally recognized scientists who have received some of their training in Canada.