{"title":"Pregnane X receptor alleviates sepsis-induced liver injury through activation of yes-associated protein in mice.","authors":"Cheng-Hua Wu, Shuang Hu, Dan Li, Xiao-Wen Jiang, Hui Ou-Yang, Guo-Fang Bi, Peng Wang, Feng-Ting Liang, Wen-Hong Zhou, Xiao Yang, Jian-Hong Fang, Hui-Chang Bi","doi":"10.1038/s41401-025-01552-4","DOIUrl":null,"url":null,"abstract":"<p><p>The severity of sepsis is attributed to excessive inflammatory responses leading to liver injury. Pregnane X receptor (PXR), a nuclear receptor that controls xenobiotic and endobiotic metabolism, has been implicated in regulating inflammation and liver regeneration. This study aimed to investigate the role of PXR in sepsis-induced liver injury and the underlying mechanisms. Sepsis models were established in mice, the mice were administered the typical mouse PXR agonist PCN (100 mg·kg<sup>-1</sup>·d<sup>-1</sup>, i.p.) for 3 consecutive days in advance, then subjected to CLP operation or LPS administration 1 h after the last administration of PCN. The results showed that PCN pretreatment significantly increased the survival rate of septic mice, while the survival rate was reduced after the knockout of Pxr. In addition, PCN pretreatment effectively alleviated sepsis-induced liver injury. In Pxr knockout mice, liver injury was more severe, whereas the protective effects of PCN pretreatment were abolished. Mechanistically, PCN pretreatment significantly upregulated the expression of yes-associated protein (YAP) and its downstream targets and decreased the level of phosphorylated nuclear factor-κB (NF-κB). Moreover, liver-specific knockdown of Yap blocked the protective effects of PCN pretreatment against sepsis-induced liver injury and downregulated the phosphorylation level of NF-κB. In summary, this study demonstrated that PXR activation protects against sepsis-induced liver injury through activation of the YAP signaling pathway, providing a new strategy for the diagnosis and treatment of sepsis-induced liver injury.</p>","PeriodicalId":6942,"journal":{"name":"Acta Pharmacologica Sinica","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmacologica Sinica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41401-025-01552-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The severity of sepsis is attributed to excessive inflammatory responses leading to liver injury. Pregnane X receptor (PXR), a nuclear receptor that controls xenobiotic and endobiotic metabolism, has been implicated in regulating inflammation and liver regeneration. This study aimed to investigate the role of PXR in sepsis-induced liver injury and the underlying mechanisms. Sepsis models were established in mice, the mice were administered the typical mouse PXR agonist PCN (100 mg·kg-1·d-1, i.p.) for 3 consecutive days in advance, then subjected to CLP operation or LPS administration 1 h after the last administration of PCN. The results showed that PCN pretreatment significantly increased the survival rate of septic mice, while the survival rate was reduced after the knockout of Pxr. In addition, PCN pretreatment effectively alleviated sepsis-induced liver injury. In Pxr knockout mice, liver injury was more severe, whereas the protective effects of PCN pretreatment were abolished. Mechanistically, PCN pretreatment significantly upregulated the expression of yes-associated protein (YAP) and its downstream targets and decreased the level of phosphorylated nuclear factor-κB (NF-κB). Moreover, liver-specific knockdown of Yap blocked the protective effects of PCN pretreatment against sepsis-induced liver injury and downregulated the phosphorylation level of NF-κB. In summary, this study demonstrated that PXR activation protects against sepsis-induced liver injury through activation of the YAP signaling pathway, providing a new strategy for the diagnosis and treatment of sepsis-induced liver injury.
期刊介绍:
APS (Acta Pharmacologica Sinica) welcomes submissions from diverse areas of pharmacology and the life sciences. While we encourage contributions across a broad spectrum, topics of particular interest include, but are not limited to: anticancer pharmacology, cardiovascular and pulmonary pharmacology, clinical pharmacology, drug discovery, gastrointestinal and hepatic pharmacology, genitourinary, renal, and endocrine pharmacology, immunopharmacology and inflammation, molecular and cellular pharmacology, neuropharmacology, pharmaceutics, and pharmacokinetics. Join us in sharing your research and insights in pharmacology and the life sciences.