Jessy A Slota, Lise Lamoureux, Jennifer Myskiw, Kathy L Frost, Sarah J Medina, Dominic M S Kielich, Melanie Leonhardt, Gunjan Thapar, Ben A Bailey-Elkin, Stephanie A Booth
{"title":"Prion replication in organotypic brain slice cultures is distinct from in vivo inoculation and is species dependent.","authors":"Jessy A Slota, Lise Lamoureux, Jennifer Myskiw, Kathy L Frost, Sarah J Medina, Dominic M S Kielich, Melanie Leonhardt, Gunjan Thapar, Ben A Bailey-Elkin, Stephanie A Booth","doi":"10.1186/s40478-025-01999-w","DOIUrl":null,"url":null,"abstract":"<p><p>Cultured brain slices rapidly replicate murine prions, exhibit prion pathology, and are amenable towards drug discovery, but have not been infected with human prions. As deer mice (Peromyscus maniculatus) are susceptible to human prions in vivo, here we investigated deer mouse organotypic brain slice cultures as a potential model of human prion disease. Deer mouse brain slices supported replication of rodent-adapted strains of scrapie and Creutzfeldt-Jakob disease (CJD), but they resisted infection with primary human prion inoculum. To better understand this discrepancy, we quantified prion replication rates, characterized cellular and molecular changes, and estimated inoculum clearance within wildtype CD1 and deer mouse brain slice cultures. Prion replication rates varied by species, strain, and brain region, independently of PrP sequence homology. Scrapie-infected CD1 cerebellar slice cultures exhibited the fastest prion replication rate, closely matching in vivo bioassay kinetics and showing neuronal and synaptic degeneration at similar timepoints. However, deer mouse slice cultures replicated deer mouse-adapted sCJD MM1 prions less efficiently than in vivo inoculation. These findings clarify both the utility and constraints of brain slice cultures in modeling prion disease and imply that the slice culture molecular environment may be suboptimal for human prion replication.</p>","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"13 1","pages":"86"},"PeriodicalIF":6.2000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12042311/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Neuropathologica Communications","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40478-025-01999-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Cultured brain slices rapidly replicate murine prions, exhibit prion pathology, and are amenable towards drug discovery, but have not been infected with human prions. As deer mice (Peromyscus maniculatus) are susceptible to human prions in vivo, here we investigated deer mouse organotypic brain slice cultures as a potential model of human prion disease. Deer mouse brain slices supported replication of rodent-adapted strains of scrapie and Creutzfeldt-Jakob disease (CJD), but they resisted infection with primary human prion inoculum. To better understand this discrepancy, we quantified prion replication rates, characterized cellular and molecular changes, and estimated inoculum clearance within wildtype CD1 and deer mouse brain slice cultures. Prion replication rates varied by species, strain, and brain region, independently of PrP sequence homology. Scrapie-infected CD1 cerebellar slice cultures exhibited the fastest prion replication rate, closely matching in vivo bioassay kinetics and showing neuronal and synaptic degeneration at similar timepoints. However, deer mouse slice cultures replicated deer mouse-adapted sCJD MM1 prions less efficiently than in vivo inoculation. These findings clarify both the utility and constraints of brain slice cultures in modeling prion disease and imply that the slice culture molecular environment may be suboptimal for human prion replication.
期刊介绍:
"Acta Neuropathologica Communications (ANC)" is a peer-reviewed journal that specializes in the rapid publication of research articles focused on the mechanisms underlying neurological diseases. The journal emphasizes the use of molecular, cellular, and morphological techniques applied to experimental or human tissues to investigate the pathogenesis of neurological disorders.
ANC is committed to a fast-track publication process, aiming to publish accepted manuscripts within two months of submission. This expedited timeline is designed to ensure that the latest findings in neuroscience and pathology are disseminated quickly to the scientific community, fostering rapid advancements in the field of neurology and neuroscience. The journal's focus on cutting-edge research and its swift publication schedule make it a valuable resource for researchers, clinicians, and other professionals interested in the study and treatment of neurological conditions.