{"title":"Advancing mRNA vaccines for infectious diseases: key components, innovations, and clinical progress.","authors":"Sha Li, Lu Zheng, Jingyi Zhong, Xihui Gao","doi":"10.1042/EBC20253009","DOIUrl":null,"url":null,"abstract":"<p><p>Vaccination remains a cornerstone in preventing infectious diseases and managing outbreaks. The COVID-19 pandemic has underscored the revolutionary impact of mRNA vaccine technology, which utilizes pathogenderived genomic sequences to generate specific antigens. This process involves in vitro transcription of mRNA, encoding target antigens that are subsequently encapsulated within lipid nanoparticles (LNPs) for efficient delivery into host cells. Once internalized, the mRNA enables antigen expression, triggering a robust immune response. This platform dramatically accelerates vaccine development timelines and offers unparalleled adaptability, making mRNA vaccines particularly advantageous in addressing emerging infectious diseases. The clinical success of BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) has fueled broader applications, including influenza, respiratory syncytial virus (RSV), Zika, and HIV. Notably, mRNA-1345 became the first FDA-approved RSV mRNA vaccine, while self-amplifying RNA and multivalent vaccines are advancing in trials. However, CureVac's CVnCoV failed due to lack of nucleoside modifications, and mRNA-1325 (Zika) showed poor immunogenicity. Additionally, mRNA-1365 (RSV) faced an FDA clinical hold due to safety concerns. These cases highlight the need for continued optimization in sequence design, delivery, and safety assessment. Despite advancements, a key hurdle persists, including mRNA instability, ultra-low storage requirements, and LNP liver accumulation. Innovations such as lyophilization and selective organ targeting technology are being explored to improve stability extrahepatic delivery. This review examines mRNA vaccine optimization strategies, clinical progress, and challenges, providing insights into future developments in this evolving field.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":"69 2","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12204004/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Essays in biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/EBC20253009","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Vaccination remains a cornerstone in preventing infectious diseases and managing outbreaks. The COVID-19 pandemic has underscored the revolutionary impact of mRNA vaccine technology, which utilizes pathogenderived genomic sequences to generate specific antigens. This process involves in vitro transcription of mRNA, encoding target antigens that are subsequently encapsulated within lipid nanoparticles (LNPs) for efficient delivery into host cells. Once internalized, the mRNA enables antigen expression, triggering a robust immune response. This platform dramatically accelerates vaccine development timelines and offers unparalleled adaptability, making mRNA vaccines particularly advantageous in addressing emerging infectious diseases. The clinical success of BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) has fueled broader applications, including influenza, respiratory syncytial virus (RSV), Zika, and HIV. Notably, mRNA-1345 became the first FDA-approved RSV mRNA vaccine, while self-amplifying RNA and multivalent vaccines are advancing in trials. However, CureVac's CVnCoV failed due to lack of nucleoside modifications, and mRNA-1325 (Zika) showed poor immunogenicity. Additionally, mRNA-1365 (RSV) faced an FDA clinical hold due to safety concerns. These cases highlight the need for continued optimization in sequence design, delivery, and safety assessment. Despite advancements, a key hurdle persists, including mRNA instability, ultra-low storage requirements, and LNP liver accumulation. Innovations such as lyophilization and selective organ targeting technology are being explored to improve stability extrahepatic delivery. This review examines mRNA vaccine optimization strategies, clinical progress, and challenges, providing insights into future developments in this evolving field.
期刊介绍:
Essays in Biochemistry publishes short, digestible reviews from experts highlighting recent key topics in biochemistry and the molecular biosciences. Written to be accessible for those not yet immersed in the subject, each article is an up-to-date, self-contained summary of the topic.
Bridging the gap between the latest research and established textbooks, Essays in Biochemistry will tell you what you need to know to begin exploring the field, as each article includes the top take-home messages as summary points.
Each issue of the journal is guest edited by a key opinion leader in the area, and whether you are continuing your studies or moving into a new research area, the Journal gives a complete picture in one place.
Essays in Biochemistry is proud to publish Understanding Biochemistry, an essential online resource for post-16 students, teachers and undergraduates. Providing up-to-date overviews of key concepts in biochemistry and the molecular biosciences, the Understanding Biochemistry issues of Essays in Biochemistry are published annually in October.