You-Na Sung, Mi-Ju Kim, Sun-Young Jun, Yeon Wook Kim, Jihyun Park, Sung-Wuk Jang, Tae Jun Song, Ki Byung Song, Seung-Mo Hong
{"title":"Tissue inhibitor of metalloproteinase 1 as a biomarker of venous invasion in pancreatic ductal adenocarcinoma.","authors":"You-Na Sung, Mi-Ju Kim, Sun-Young Jun, Yeon Wook Kim, Jihyun Park, Sung-Wuk Jang, Tae Jun Song, Ki Byung Song, Seung-Mo Hong","doi":"10.62347/OVUJ4436","DOIUrl":null,"url":null,"abstract":"<p><p>Pancreatic ductal adenocarcinoma (PDAC) is a fatal disease with a poor prognosis. While venous invasion is believed to contribute to liver metastasis and an unfavorable prognosis, the precise mechanisms involved remain unclear. Here, we conducted gene expression profiling on eight PDAC tissue samples exhibiting portal venous invasion (VI group) compared to PDAC samples without portal venous invasion (CA group) and normal portal vein tissues (NV group). A subset of genes, including tissue inhibitor of metalloproteinase 1 (<i>TIMP1</i>), C-X-C motif chemokine receptor 4 (<i>CXCR4</i>), olfactomedin-like 2B (<i>OLFML2B</i>), and cytochrome P450 family 1 subfamily B member 1 (<i>CYP1B1</i>), was found to be specifically expressed in the PDAC group with venous invasion. Immunohistochemical staining of 15 cases revealed significantly higher levels of <i>TIMP1</i> (P=.026) and <i>CXCR4</i> (P<.001) in the VI set compared to the CA set. In addition, the PDAC group with strong TIMP1 expression had a higher frequency of lymphovascular invasion (P<.001) and lower 5-year survival rates than the PDAC group with no/weak <i>TIMP1</i> expression (P=.027). Specific <i>TIMP1</i> expression in the venous invasion foci was highlighted on 3D reconstruction imaging. Invasion assays and/or Western blot analyses were performed on pancreatic cancer cells (Panc1), cancer-associated fibroblasts (CAFs), and human endothelial cells (EA.hy926). TIMP1 inhibition suppressed cancer cell invasion in the presence of CAFs. TIMP1 expression increased with PI3Kp110, phospho-AKT, and phospho-ERK1/2 in Panc1 cells co-cultured with CAFs and EA.hy926 endothelial cells. Our data demonstrate that TIMP1 in pancreatic cancer cells promotes venous invasion of PDACs by activating the PI3K/AKT and ERK1/2 pathways in collaboration with CAFs and endothelial cells. Therefore, TIMP1 may serve as a biomarker for venous invasion in PDACs.</p>","PeriodicalId":7437,"journal":{"name":"American journal of cancer research","volume":"15 3","pages":"1248-1263"},"PeriodicalIF":3.6000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11982717/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.62347/OVUJ4436","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a fatal disease with a poor prognosis. While venous invasion is believed to contribute to liver metastasis and an unfavorable prognosis, the precise mechanisms involved remain unclear. Here, we conducted gene expression profiling on eight PDAC tissue samples exhibiting portal venous invasion (VI group) compared to PDAC samples without portal venous invasion (CA group) and normal portal vein tissues (NV group). A subset of genes, including tissue inhibitor of metalloproteinase 1 (TIMP1), C-X-C motif chemokine receptor 4 (CXCR4), olfactomedin-like 2B (OLFML2B), and cytochrome P450 family 1 subfamily B member 1 (CYP1B1), was found to be specifically expressed in the PDAC group with venous invasion. Immunohistochemical staining of 15 cases revealed significantly higher levels of TIMP1 (P=.026) and CXCR4 (P<.001) in the VI set compared to the CA set. In addition, the PDAC group with strong TIMP1 expression had a higher frequency of lymphovascular invasion (P<.001) and lower 5-year survival rates than the PDAC group with no/weak TIMP1 expression (P=.027). Specific TIMP1 expression in the venous invasion foci was highlighted on 3D reconstruction imaging. Invasion assays and/or Western blot analyses were performed on pancreatic cancer cells (Panc1), cancer-associated fibroblasts (CAFs), and human endothelial cells (EA.hy926). TIMP1 inhibition suppressed cancer cell invasion in the presence of CAFs. TIMP1 expression increased with PI3Kp110, phospho-AKT, and phospho-ERK1/2 in Panc1 cells co-cultured with CAFs and EA.hy926 endothelial cells. Our data demonstrate that TIMP1 in pancreatic cancer cells promotes venous invasion of PDACs by activating the PI3K/AKT and ERK1/2 pathways in collaboration with CAFs and endothelial cells. Therefore, TIMP1 may serve as a biomarker for venous invasion in PDACs.
期刊介绍:
The American Journal of Cancer Research (AJCR) (ISSN 2156-6976), is an independent open access, online only journal to facilitate rapid dissemination of novel discoveries in basic science and treatment of cancer. It was founded by a group of scientists for cancer research and clinical academic oncologists from around the world, who are devoted to the promotion and advancement of our understanding of the cancer and its treatment. The scope of AJCR is intended to encompass that of multi-disciplinary researchers from any scientific discipline where the primary focus of the research is to increase and integrate knowledge about etiology and molecular mechanisms of carcinogenesis with the ultimate aim of advancing the cure and prevention of this increasingly devastating disease. To achieve these aims AJCR will publish review articles, original articles and new techniques in cancer research and therapy. It will also publish hypothesis, case reports and letter to the editor. Unlike most other open access online journals, AJCR will keep most of the traditional features of paper print that we are all familiar with, such as continuous volume, issue numbers, as well as continuous page numbers to retain our comfortable familiarity towards an academic journal.