Ketone body-supported respiration in murine isolated brain mitochondria is augmented by alpha-ketoglutarate and is optimized by neuronal SCOT expression.
Xin C Davis, Colin S McCoin, E Matthew Morris, Julie Allen, Harrison D Stierwalt, Edziu Franczak, Eric D Queathem, Kyle L Fulghum, Patrycja Puchalska, Peter A Crawford, John P Thyfault
{"title":"Ketone body-supported respiration in murine isolated brain mitochondria is augmented by alpha-ketoglutarate and is optimized by neuronal SCOT expression.","authors":"Xin C Davis, Colin S McCoin, E Matthew Morris, Julie Allen, Harrison D Stierwalt, Edziu Franczak, Eric D Queathem, Kyle L Fulghum, Patrycja Puchalska, Peter A Crawford, John P Thyfault","doi":"10.1152/ajpendo.00058.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Ketone bodies are increasingly examined as an alternative fuel source for the known decreases in glucose utilization that occur with neurodegeneration. Here, we established a protocol to maximize ketone body respiration in isolated brain mitochondria, while quantifying acetyl-CoA and energy charge via liquid chromatography-tandem mass spectrometry in control mice compared with mice with neuron-specific deletion of succinyl-CoA-3-oxoacid-CoA transferase (SCOT), required for CoA transfer from succinyl-CoA to acetoacetate (AcAc) to support its oxidation. Maximal ADP-dependent AcAc respiration occurred at 1 mM; however, the percent increase above basal was minimal (∼15%). Alpha-ketoglutarate (αKG) substantially increased AcAc-dependent respiration in isolated brain mitochondria, putatively through the generation of succinyl-CoA. Using mice with neuron-specific deletion of SCOT, we also examined brain mitochondrial respiration of AcAc and resulting acetyl CoA and energy charge (cellular energy availability via adenosine nucleotide ratios of ATP, ADP, and AMP). As expected, isolated brain mitochondria from SCOT-knockout (KO) mice had lower AcAc State 3 respiration than control mice. Surprisingly, we did not find differences in mitochondrial energy charge between SCOT control and neuron SCOT-KO mice despite decreased acetyl-CoA level in SCOT-KO mice when AcAc was used as the substrate. In conclusion, we show that αKG enhances ketone-supported respiration rate in isolated brain mitochondria and ketone metabolism in neurons affects acetyl-CoA level in brain mitochondria but not energy charge. Future work will determine whether diet, exercise, sex, or age impacts ketone-supported respiration rates in conjunction with differences in markers of brain health.<b>NEW & NOTEWORTHY</b> This paper established a protocol to maximize ketone body respiration in isolated brain mitochondria while quantifying acetyl-CoA and energy charge in control mice compared with mice with neuron-specific deletion of succinyl-CoA-3-oxoacid-CoA transferase (SCOT) enzyme, required for ketone body oxidation. Findings are that alpha-ketoglutarate substantially increased acetoacetate (AcAc)-dependent respiration and neuron SCOT-KO had lower AcAc state 3 respiration with a decreased acetyl-CoA level.</p>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":"328 6","pages":"E822-E832"},"PeriodicalIF":4.2000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Endocrinology and metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpendo.00058.2025","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Ketone bodies are increasingly examined as an alternative fuel source for the known decreases in glucose utilization that occur with neurodegeneration. Here, we established a protocol to maximize ketone body respiration in isolated brain mitochondria, while quantifying acetyl-CoA and energy charge via liquid chromatography-tandem mass spectrometry in control mice compared with mice with neuron-specific deletion of succinyl-CoA-3-oxoacid-CoA transferase (SCOT), required for CoA transfer from succinyl-CoA to acetoacetate (AcAc) to support its oxidation. Maximal ADP-dependent AcAc respiration occurred at 1 mM; however, the percent increase above basal was minimal (∼15%). Alpha-ketoglutarate (αKG) substantially increased AcAc-dependent respiration in isolated brain mitochondria, putatively through the generation of succinyl-CoA. Using mice with neuron-specific deletion of SCOT, we also examined brain mitochondrial respiration of AcAc and resulting acetyl CoA and energy charge (cellular energy availability via adenosine nucleotide ratios of ATP, ADP, and AMP). As expected, isolated brain mitochondria from SCOT-knockout (KO) mice had lower AcAc State 3 respiration than control mice. Surprisingly, we did not find differences in mitochondrial energy charge between SCOT control and neuron SCOT-KO mice despite decreased acetyl-CoA level in SCOT-KO mice when AcAc was used as the substrate. In conclusion, we show that αKG enhances ketone-supported respiration rate in isolated brain mitochondria and ketone metabolism in neurons affects acetyl-CoA level in brain mitochondria but not energy charge. Future work will determine whether diet, exercise, sex, or age impacts ketone-supported respiration rates in conjunction with differences in markers of brain health.NEW & NOTEWORTHY This paper established a protocol to maximize ketone body respiration in isolated brain mitochondria while quantifying acetyl-CoA and energy charge in control mice compared with mice with neuron-specific deletion of succinyl-CoA-3-oxoacid-CoA transferase (SCOT) enzyme, required for ketone body oxidation. Findings are that alpha-ketoglutarate substantially increased acetoacetate (AcAc)-dependent respiration and neuron SCOT-KO had lower AcAc state 3 respiration with a decreased acetyl-CoA level.
期刊介绍:
The American Journal of Physiology-Endocrinology and Metabolism publishes original, mechanistic studies on the physiology of endocrine and metabolic systems. Physiological, cellular, and molecular studies in whole animals or humans will be considered. Specific themes include, but are not limited to, mechanisms of hormone and growth factor action; hormonal and nutritional regulation of metabolism, inflammation, microbiome and energy balance; integrative organ cross talk; paracrine and autocrine control of endocrine cells; function and activation of hormone receptors; endocrine or metabolic control of channels, transporters, and membrane function; temporal analysis of hormone secretion and metabolism; and mathematical/kinetic modeling of metabolism. Novel molecular, immunological, or biophysical studies of hormone action are also welcome.