M3S-GRPred: a novel ensemble learning approach for the interpretable prediction of glucocorticoid receptor antagonists using a multi-step stacking strategy.
{"title":"M3S-GRPred: a novel ensemble learning approach for the interpretable prediction of glucocorticoid receptor antagonists using a multi-step stacking strategy.","authors":"Nalini Schaduangrat, Hathaichanok Chuntakaruk, Thanyada Rungrotmongkol, Pakpoom Mookdarsanit, Watshara Shoombuatong","doi":"10.1186/s12859-025-06132-1","DOIUrl":null,"url":null,"abstract":"<p><p>Accelerating drug discovery for glucocorticoid receptor (GR)-related disorders, including innovative machine learning (ML)-based approaches, holds promise in advancing therapeutic development, optimizing treatment efficacy, and mitigating adverse effects. While experimental methods can accurately identify GR antagonists, they are often not cost-effective for large-scale drug discovery. Thus, computational approaches leveraging SMILES information for precise in silico identification of GR antagonists are crucial, enabling efficient and scalable drug discovery. Here, we develop a new ensemble learning approach using a multi-step stacking strategy (M3S), termed M3S-GRPred, aimed at rapidly and accurately discovering novel GR antagonists. To the best of our knowledge, M3S-GRPred is the first SMILES-based predictor designed to identify GR antagonists without the use of 3D structural information. In M3S-GRPred, we first constructed different balanced subsets using an under-sampling approach. Using these balanced subsets, we explored and evaluated heterogeneous base-classifiers trained with a variety of SMILES-based feature descriptors coupled with popular ML algorithms. Finally, M3S-GRPred was constructed by integrating probabilistic feature from the selected base-classifiers derived from a two-step feature selection technique. Our comparative experiments demonstrate that M3S-GRPred can precisely identify GR antagonists and effectively address the imbalanced dataset. Compared to traditional ML classifiers, M3S-GRPred attained superior performance in terms of both the training and independent test datasets. Additionally, M3S-GRPred was applied to identify potential GR antagonists among FDA-approved drugs confirmed through molecular docking, followed by detailed MD simulation studies for drug repurposing in Cushing's syndrome. We anticipate that M3S-GRPred will serve as an efficient screening tool for discovering novel GR antagonists from vast libraries of unknown compounds in a cost-effective manner.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"117"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12044944/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-025-06132-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Accelerating drug discovery for glucocorticoid receptor (GR)-related disorders, including innovative machine learning (ML)-based approaches, holds promise in advancing therapeutic development, optimizing treatment efficacy, and mitigating adverse effects. While experimental methods can accurately identify GR antagonists, they are often not cost-effective for large-scale drug discovery. Thus, computational approaches leveraging SMILES information for precise in silico identification of GR antagonists are crucial, enabling efficient and scalable drug discovery. Here, we develop a new ensemble learning approach using a multi-step stacking strategy (M3S), termed M3S-GRPred, aimed at rapidly and accurately discovering novel GR antagonists. To the best of our knowledge, M3S-GRPred is the first SMILES-based predictor designed to identify GR antagonists without the use of 3D structural information. In M3S-GRPred, we first constructed different balanced subsets using an under-sampling approach. Using these balanced subsets, we explored and evaluated heterogeneous base-classifiers trained with a variety of SMILES-based feature descriptors coupled with popular ML algorithms. Finally, M3S-GRPred was constructed by integrating probabilistic feature from the selected base-classifiers derived from a two-step feature selection technique. Our comparative experiments demonstrate that M3S-GRPred can precisely identify GR antagonists and effectively address the imbalanced dataset. Compared to traditional ML classifiers, M3S-GRPred attained superior performance in terms of both the training and independent test datasets. Additionally, M3S-GRPred was applied to identify potential GR antagonists among FDA-approved drugs confirmed through molecular docking, followed by detailed MD simulation studies for drug repurposing in Cushing's syndrome. We anticipate that M3S-GRPred will serve as an efficient screening tool for discovering novel GR antagonists from vast libraries of unknown compounds in a cost-effective manner.
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.