Tet Methylcytosine Dioxygenase 2 (TET2) Mutation Drives a Global Hypermethylation Signature in Patients With Pulmonary Arterial Hypertension (PAH): Correlation With Altered Gene Expression Relevant to a Common T Cell Phenotype.

IF 4.2 2区 医学 Q1 PHYSIOLOGY
Charles C T Hindmarch, François Potus, Ruaa Al-Qazazi, Benjamin P Ott, William C Nichols, Michael J Rauh, Stephen L Archer
{"title":"Tet Methylcytosine Dioxygenase 2 (TET2) Mutation Drives a Global Hypermethylation Signature in Patients With Pulmonary Arterial Hypertension (PAH): Correlation With Altered Gene Expression Relevant to a Common T Cell Phenotype.","authors":"Charles C T Hindmarch, François Potus, Ruaa Al-Qazazi, Benjamin P Ott, William C Nichols, Michael J Rauh, Stephen L Archer","doi":"10.1002/cph4.70011","DOIUrl":null,"url":null,"abstract":"<p><p>Epigenetic changes in gene expression due to DNA methylation regulate pulmonary vascular structure and function. Genetic or acquired alterations in DNA methylation/demethylation can promote the development of pulmonary arterial hypertension (PAH). Here, we performed epigenome-wide mapping of DNA methylation in whole blood from 10 healthy people and 19 age/sex-matched PAH patients from the PAH Biobank. Exome sequencing confirmed the absence of known mutations in PAH-associated gene variants identifying subjects with or without mutations of TET2, a putative PAH gene encoding the demethylating enzyme, TET2. DNA of patients with PAH and no TET2 mutation was hypermethylated compared to healthy controls. Patients with PAH and a TET2 mutation had greater DNA CpG methylation than mutation-free PAH patients. Unique Differentially Methylated Regions (DMR) were more common in patients with PAH with TET2 mutations (1164) than in PAH without mutations (262). We correlated methylome findings with a public PAH transcriptomic RNA dataset, prioritizing targets that are both hypermethylated in our cohort and downregulated at the RNA level. Relative to controls, functional analysis reveals enriched functions related to T cell differentiation in PAH patients with a TET2 mutation. We identified genes with downregulated expression that were hypermethylated in PAH patients (with or without a TET2 mutation). In both cases, a conserved T cell phenotype emerged. Pan-chromosomal hypermethylation in PAH is greatest in patients with TET2 mutations. Observed hypermethylation of genes involved in the pathogenesis of PAH, such as EIF2AK4, and transcription factors that regulate T cell development, such as TCF7, merit further study and may contribute to the inflammation in PAH.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":"15 2","pages":"e70011"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12021535/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comprehensive Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cph4.70011","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Epigenetic changes in gene expression due to DNA methylation regulate pulmonary vascular structure and function. Genetic or acquired alterations in DNA methylation/demethylation can promote the development of pulmonary arterial hypertension (PAH). Here, we performed epigenome-wide mapping of DNA methylation in whole blood from 10 healthy people and 19 age/sex-matched PAH patients from the PAH Biobank. Exome sequencing confirmed the absence of known mutations in PAH-associated gene variants identifying subjects with or without mutations of TET2, a putative PAH gene encoding the demethylating enzyme, TET2. DNA of patients with PAH and no TET2 mutation was hypermethylated compared to healthy controls. Patients with PAH and a TET2 mutation had greater DNA CpG methylation than mutation-free PAH patients. Unique Differentially Methylated Regions (DMR) were more common in patients with PAH with TET2 mutations (1164) than in PAH without mutations (262). We correlated methylome findings with a public PAH transcriptomic RNA dataset, prioritizing targets that are both hypermethylated in our cohort and downregulated at the RNA level. Relative to controls, functional analysis reveals enriched functions related to T cell differentiation in PAH patients with a TET2 mutation. We identified genes with downregulated expression that were hypermethylated in PAH patients (with or without a TET2 mutation). In both cases, a conserved T cell phenotype emerged. Pan-chromosomal hypermethylation in PAH is greatest in patients with TET2 mutations. Observed hypermethylation of genes involved in the pathogenesis of PAH, such as EIF2AK4, and transcription factors that regulate T cell development, such as TCF7, merit further study and may contribute to the inflammation in PAH.

Tet甲基胞嘧啶双加氧酶2 (TET2)突变驱动肺动脉高压(PAH)患者的整体高甲基化特征:与普通T细胞表型相关的基因表达改变相关
DNA甲基化导致的表观遗传基因表达改变调节肺血管的结构和功能。遗传或获得性DNA甲基化/去甲基化改变可促进肺动脉高压(PAH)的发展。在这里,我们对来自PAH生物银行的10名健康人和19名年龄/性别匹配的PAH患者的全血DNA甲基化进行了全基因组图谱绘制。外显子组测序证实了PAH相关基因变异中没有已知的突变,这些突变识别了具有或不具有TET2突变的受试者,TET2是一种假定的PAH基因,编码去甲基化酶TET2。与健康对照相比,无TET2突变的PAH患者的DNA高甲基化。有TET2突变的PAH患者的DNA CpG甲基化程度高于无突变的PAH患者。独特差异甲基化区(DMR)在TET2突变的PAH患者(1164)中比在没有突变的PAH患者(262)中更常见。我们将甲基组发现与公共PAH转录组RNA数据集相关联,优先考虑在我们的队列中高甲基化和RNA水平下调的靶标。相对于对照组,功能分析显示TET2突变的PAH患者与T细胞分化相关的功能丰富。我们确定了PAH患者(有或没有TET2突变)中表达下调的基因高甲基化。在这两种情况下,出现了保守的T细胞表型。PAH的泛染色体超甲基化在TET2突变患者中最为严重。观察到的参与PAH发病机制的基因如EIF2AK4和调节T细胞发育的转录因子如TCF7的高甲基化值得进一步研究,并可能参与PAH的炎症。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.50
自引率
0.00%
发文量
38
审稿时长
6-12 weeks
期刊介绍: Comprehensive Physiology is the most authoritative and comprehensive collection of physiology information ever assembled, and uses the most powerful features of review journals and electronic reference works to cover the latest key developments in the field, through the most authoritative articles on the subjects covered. This makes Comprehensive Physiology a valued reference work on the evolving science of physiology for both researchers and clinicians. It also provides a useful teaching tool for instructors and an informative resource for medical students and other students in the life and health sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信