Ulli Rothweiler, Hanna-Kirsti S. Leiros, Adele Williamson
{"title":"Crystal structure of ATP-dependent DNA ligase from Rhizobium phage vB_RleM_P10VF","authors":"Ulli Rothweiler, Hanna-Kirsti S. Leiros, Adele Williamson","doi":"10.1107/S2053230X2500411X","DOIUrl":null,"url":null,"abstract":"<p>DNA ligases are foundational molecular-biological tools used for cloning and sequencing workflows, and are essential replicative enzymes for all cellular life forms as well as many viruses and bacteriophage. There is considerable interest in structurally and functionally characterizing novel DNA ligases and profiling their suitability for molecular-biological applications. Here, we report the crystal structure of the ATP-dependent DNA ligase from the <i>Rhizobium</i> phage vB_RleM_P10VF bound to a nicked DNA duplex determined to 2.2 Å resolution. The enzyme crystallized in the DNA-encircling conformation, arrested as a step 2 intermediate in the catalytic cycle with the adenylating cofactor transferred to the 5′-phosphate of the DNA nick. The overall structure of the DNA ligase closely resembles that of the T4 DNA ligase, including an α-helical globular DNA-binding domain. Several secondary-structural elements are abbreviated in the P10VF DNA ligase relative to the T4 DNA ligase enzyme, which may account for its lower specific activity, especially on DNA substrates containing double-stranded breaks.</p>","PeriodicalId":7029,"journal":{"name":"Acta crystallographica. Section F, Structural biology communications","volume":"81 6","pages":"249-254"},"PeriodicalIF":1.1000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12121391/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta crystallographica. Section F, Structural biology communications","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1107/S2053230X2500411X","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
DNA ligases are foundational molecular-biological tools used for cloning and sequencing workflows, and are essential replicative enzymes for all cellular life forms as well as many viruses and bacteriophage. There is considerable interest in structurally and functionally characterizing novel DNA ligases and profiling their suitability for molecular-biological applications. Here, we report the crystal structure of the ATP-dependent DNA ligase from the Rhizobium phage vB_RleM_P10VF bound to a nicked DNA duplex determined to 2.2 Å resolution. The enzyme crystallized in the DNA-encircling conformation, arrested as a step 2 intermediate in the catalytic cycle with the adenylating cofactor transferred to the 5′-phosphate of the DNA nick. The overall structure of the DNA ligase closely resembles that of the T4 DNA ligase, including an α-helical globular DNA-binding domain. Several secondary-structural elements are abbreviated in the P10VF DNA ligase relative to the T4 DNA ligase enzyme, which may account for its lower specific activity, especially on DNA substrates containing double-stranded breaks.
期刊介绍:
Acta Crystallographica Section F is a rapid structural biology communications journal.
Articles on any aspect of structural biology, including structures determined using high-throughput methods or from iterative studies such as those used in the pharmaceutical industry, are welcomed by the journal.
The journal offers the option of open access, and all communications benefit from unlimited free use of colour illustrations and no page charges. Authors are encouraged to submit multimedia content for publication with their articles.
Acta Cryst. F has a dedicated online tool called publBio that is designed to make the preparation and submission of articles easier for authors.