Mechanical insights into fat pads: a comparative study of infrapatellar and suprapatellar fat pads in osteoarthritis.

IF 2.8 4区 医学 Q3 CELL BIOLOGY
Sofia Pettenuzzo, Alice Berardo, Elisa Belluzzi, Assunta Pozzuoli, Pietro Ruggieri, Emanuele Luigi Carniel, Chiara Giulia Fontanella
{"title":"Mechanical insights into fat pads: a comparative study of infrapatellar and suprapatellar fat pads in osteoarthritis.","authors":"Sofia Pettenuzzo, Alice Berardo, Elisa Belluzzi, Assunta Pozzuoli, Pietro Ruggieri, Emanuele Luigi Carniel, Chiara Giulia Fontanella","doi":"10.1080/03008207.2025.2502591","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Osteoarthritis (OA) is the most common musculoskeletal disorder, primarily affecting knee joints and causing pain and disability. The infrapatellar (IFP) and the suprapatellar (SFP) fat pad are knee adipose tissues that play essential mechanical roles during articular activity but are also sources of adipokines and cytokines, contributing to OA progression. For this reason, this work aims to provide new insights into IFP and SFP implications in knee OA.</p><p><strong>Materials and methods: </strong>IFP and SFP tissue mechanical properties were studied through compression, indentation and shear mechanical tests performed on samples collected from patients who underwent total knee arthroplasty surgery due to end-stage OA. The energy loss, peak stress, and initial and final elastic moduli were calculated from the unconfined compression tests. The time-dependent response, evaluated in terms of equilibrium relative stiffness, was computed from stress-relaxation loading conditions. Considering shear tests, they provided strain-energy dissipation density, peak shear stress, and the shear moduli.</p><p><strong>Results: </strong>Experimental results showed the typical adipose tissue mechanics features: non-linear stiffening with strain and time-dependent response. Experimental results showed that OA IFP is stiffer than OA SFP, indeed IFP final compression elastic modulus was greater than the SFP (84.43 kPa vs 35.54 kPa respectively) (<i>p</i> = 0.042). Regarding the viscoelastic properties they were comparable: the equilibrium relative stiffness was reported as 0.13 for IFP and 0.11 for SFP (<i>p</i> = 0.026).</p><p><strong>Conclusions: </strong>These outcomes provide new insights into the OA influence on knee mechanics and lay the basis for developing computational tools to improve knee prosthesis design.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":" ","pages":"1-12"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Connective Tissue Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03008207.2025.2502591","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Osteoarthritis (OA) is the most common musculoskeletal disorder, primarily affecting knee joints and causing pain and disability. The infrapatellar (IFP) and the suprapatellar (SFP) fat pad are knee adipose tissues that play essential mechanical roles during articular activity but are also sources of adipokines and cytokines, contributing to OA progression. For this reason, this work aims to provide new insights into IFP and SFP implications in knee OA.

Materials and methods: IFP and SFP tissue mechanical properties were studied through compression, indentation and shear mechanical tests performed on samples collected from patients who underwent total knee arthroplasty surgery due to end-stage OA. The energy loss, peak stress, and initial and final elastic moduli were calculated from the unconfined compression tests. The time-dependent response, evaluated in terms of equilibrium relative stiffness, was computed from stress-relaxation loading conditions. Considering shear tests, they provided strain-energy dissipation density, peak shear stress, and the shear moduli.

Results: Experimental results showed the typical adipose tissue mechanics features: non-linear stiffening with strain and time-dependent response. Experimental results showed that OA IFP is stiffer than OA SFP, indeed IFP final compression elastic modulus was greater than the SFP (84.43 kPa vs 35.54 kPa respectively) (p = 0.042). Regarding the viscoelastic properties they were comparable: the equilibrium relative stiffness was reported as 0.13 for IFP and 0.11 for SFP (p = 0.026).

Conclusions: These outcomes provide new insights into the OA influence on knee mechanics and lay the basis for developing computational tools to improve knee prosthesis design.

脂肪垫的机械洞察:骨关节炎中髌下和髌上脂肪垫的比较研究。
目的:骨关节炎(OA)是最常见的肌肉骨骼疾病,主要影响膝关节并引起疼痛和残疾。髌下(IFP)和髌上(SFP)脂肪垫是膝关节脂肪组织,在关节活动中起重要的机械作用,但也是脂肪因子和细胞因子的来源,有助于OA的进展。因此,本研究旨在为IFP和SFP在膝关节OA中的作用提供新的见解。材料和方法:对因终末期OA而行全膝关节置换术的患者标本进行压缩、压痕和剪切力学试验,研究IFP和SFP的组织力学性能。根据无侧限压缩试验计算了能量损失、峰值应力、初始和最终弹性模量。时间相关的响应,在平衡相对刚度方面进行评估,从应力松弛加载条件计算。考虑剪切试验,给出了应变-能量耗散密度、峰值剪应力和剪切模量。结果:实验结果显示了典型的脂肪组织力学特征:具有应变和时间相关响应的非线性硬化。实验结果表明,OA IFP比OA SFP更硬,IFP的终压缩弹性模量大于SFP(分别为84.43 kPa和35.54 kPa) (p = 0.042)。在粘弹性方面,它们具有可比性:IFP的平衡相对刚度为0.13,SFP的平衡相对刚度为0.11 (p = 0.026)。结论:这些结果为OA对膝关节力学的影响提供了新的见解,并为开发计算工具来改进膝关节假体设计奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Connective Tissue Research
Connective Tissue Research 生物-细胞生物学
CiteScore
6.60
自引率
3.40%
发文量
37
审稿时长
2 months
期刊介绍: The aim of Connective Tissue Research is to present original and significant research in all basic areas of connective tissue and matrix biology. The journal also provides topical reviews and, on occasion, the proceedings of conferences in areas of special interest at which original work is presented. The journal supports an interdisciplinary approach; we present a variety of perspectives from different disciplines, including Biochemistry Cell and Molecular Biology Immunology Structural Biology Biophysics Biomechanics Regenerative Medicine The interests of the Editorial Board are to understand, mechanistically, the structure-function relationships in connective tissue extracellular matrix, and its associated cells, through interpretation of sophisticated experimentation using state-of-the-art technologies that include molecular genetics, imaging, immunology, biomechanics and tissue engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信