Han Rae Kim, Parisa Tabiatnejad, Hovhannes Arestakesyan, Colin N Young
{"title":"Modulation of liver lipid metabolic pathways by central nervous system ER stress.","authors":"Han Rae Kim, Parisa Tabiatnejad, Hovhannes Arestakesyan, Colin N Young","doi":"10.1152/ajpendo.00392.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Metabolic dysfunction-associated steatotic liver disease (MASLD), considered as the hepatic manifestation of metabolic syndrome, can increase the risk for cardiometabolic diseases. Accumulating reports have implicated the central nervous system in MASLD pathogenesis, specifically endoplasmic reticulum (ER) stress in subfornical organ (SFO) to hypothalamic paraventricular nucleus (PVN) projecting neurons (SFO→PVN). Here, we investigated how ER stress in this neural circuit influences hepatic lipid regulatory pathways that may contribute to MASLD development during obesity. Hepatic steatosis was elicited by feeding C57BL/6J male mice a high-fat diet for 11 wk. Intersectional viral targeting was used to inhibit ER stress in SFO→PVN neurons to examine the contribution of ER stress in this circuit to hepatic lipid acquisition and disposal genes during obesity. Inhibition of ER stress in SFO→PVN neurons of obese mice resulted in a reduction in hepatic triglycerides and lipid acquisition genes that was paralleled by a reduction in liver tyrosine hydroxylase, the rate-limiting enzyme in catecholamine synthesis. Moreover, hepatic tyrosine hydroxylase expression was positively correlated with lipid acquisition but not disposal pathways. These results indicate that ER stress in SFO→PVN neurons may contribute to MASLD through sympathetic nervous system influences, primarily on hepatic lipid acquisition.<b>NEW & NOTEWORTHY</b> Endoplasmic reticulum stress in SFO→PVN neurons modulates hepatic lipid acquisition and disposal pathways during obesity-induced hepatic steatosis. Hepatic tyrosine hydroxylase levels are positively correlated with liver triglyceride levels and lipid acquisition pathway-related genes in diet-induced obese animals.</p>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":"328 6","pages":"E833-E844"},"PeriodicalIF":4.2000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Endocrinology and metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpendo.00392.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), considered as the hepatic manifestation of metabolic syndrome, can increase the risk for cardiometabolic diseases. Accumulating reports have implicated the central nervous system in MASLD pathogenesis, specifically endoplasmic reticulum (ER) stress in subfornical organ (SFO) to hypothalamic paraventricular nucleus (PVN) projecting neurons (SFO→PVN). Here, we investigated how ER stress in this neural circuit influences hepatic lipid regulatory pathways that may contribute to MASLD development during obesity. Hepatic steatosis was elicited by feeding C57BL/6J male mice a high-fat diet for 11 wk. Intersectional viral targeting was used to inhibit ER stress in SFO→PVN neurons to examine the contribution of ER stress in this circuit to hepatic lipid acquisition and disposal genes during obesity. Inhibition of ER stress in SFO→PVN neurons of obese mice resulted in a reduction in hepatic triglycerides and lipid acquisition genes that was paralleled by a reduction in liver tyrosine hydroxylase, the rate-limiting enzyme in catecholamine synthesis. Moreover, hepatic tyrosine hydroxylase expression was positively correlated with lipid acquisition but not disposal pathways. These results indicate that ER stress in SFO→PVN neurons may contribute to MASLD through sympathetic nervous system influences, primarily on hepatic lipid acquisition.NEW & NOTEWORTHY Endoplasmic reticulum stress in SFO→PVN neurons modulates hepatic lipid acquisition and disposal pathways during obesity-induced hepatic steatosis. Hepatic tyrosine hydroxylase levels are positively correlated with liver triglyceride levels and lipid acquisition pathway-related genes in diet-induced obese animals.
期刊介绍:
The American Journal of Physiology-Endocrinology and Metabolism publishes original, mechanistic studies on the physiology of endocrine and metabolic systems. Physiological, cellular, and molecular studies in whole animals or humans will be considered. Specific themes include, but are not limited to, mechanisms of hormone and growth factor action; hormonal and nutritional regulation of metabolism, inflammation, microbiome and energy balance; integrative organ cross talk; paracrine and autocrine control of endocrine cells; function and activation of hormone receptors; endocrine or metabolic control of channels, transporters, and membrane function; temporal analysis of hormone secretion and metabolism; and mathematical/kinetic modeling of metabolism. Novel molecular, immunological, or biophysical studies of hormone action are also welcome.