Marcos Valério Vieira Lyrio, Danieli Grancieri Debona, Amanda Eiriz Feu, Nayara Araujo Dos Santos, Arlan da Silva Gonçalves, Ricardo Machado Kuster, Eustáquio Vinícius Ribeiro de Castro, Wanderson Romão
{"title":"LC-ESI(±)-LTQ MS<sup>n</sup>-Based Metabolomic Profiling of Coffee: Fragmentation Pathways for Identification of Major Polar Compounds.","authors":"Marcos Valério Vieira Lyrio, Danieli Grancieri Debona, Amanda Eiriz Feu, Nayara Araujo Dos Santos, Arlan da Silva Gonçalves, Ricardo Machado Kuster, Eustáquio Vinícius Ribeiro de Castro, Wanderson Romão","doi":"10.1021/jasms.4c00418","DOIUrl":null,"url":null,"abstract":"<p><p>Coffee is characterized by a complex chemical matrix that significantly influences its organoleptic properties and market value. This complexity is driven by factors such as botanical species, geographical origin, cultivation conditions, and post-harvest processing methods. Metabolomic studies aim to elucidate how these factors impact the biosynthesis of metabolites that contribute to the sensory qualities of high-quality coffee. Among various analytical techniques, liquid chromatography-mass spectrometry (LC-MS) is particularly effective for separating, identifying, and quantifying these compounds. Most metabolomic studies employ high-resolution mass spectrometry (HRMS) for its superior mass accuracy (<1 ppm), whereas the interpretation of low-resolution data requires additional effort, often relying on literature references and proposed fragmentation mechanisms. In this study, we applied LC-ESI(±)LTQ MS<sup>n</sup> to comprehensively profile coffee metabolites, identifying 60 compounds, including polar compounds and their isomers such as chlorogenic acids, carbohydrates, amino acids, alkaloids, glycosylated diterpenes, and flavonoids. Fragmentation mechanisms were proposed and discussed. The results demonstrate the effectiveness of LC-ESI(±)LTQ MS<sup>n</sup> in a detailed metabolomic analysis, providing a robust platform for future research in coffee metabolomics.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jasms.4c00418","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Coffee is characterized by a complex chemical matrix that significantly influences its organoleptic properties and market value. This complexity is driven by factors such as botanical species, geographical origin, cultivation conditions, and post-harvest processing methods. Metabolomic studies aim to elucidate how these factors impact the biosynthesis of metabolites that contribute to the sensory qualities of high-quality coffee. Among various analytical techniques, liquid chromatography-mass spectrometry (LC-MS) is particularly effective for separating, identifying, and quantifying these compounds. Most metabolomic studies employ high-resolution mass spectrometry (HRMS) for its superior mass accuracy (<1 ppm), whereas the interpretation of low-resolution data requires additional effort, often relying on literature references and proposed fragmentation mechanisms. In this study, we applied LC-ESI(±)LTQ MSn to comprehensively profile coffee metabolites, identifying 60 compounds, including polar compounds and their isomers such as chlorogenic acids, carbohydrates, amino acids, alkaloids, glycosylated diterpenes, and flavonoids. Fragmentation mechanisms were proposed and discussed. The results demonstrate the effectiveness of LC-ESI(±)LTQ MSn in a detailed metabolomic analysis, providing a robust platform for future research in coffee metabolomics.
期刊介绍:
The Journal of the American Society for Mass Spectrometry presents research papers covering all aspects of mass spectrometry, incorporating coverage of fields of scientific inquiry in which mass spectrometry can play a role.
Comprehensive in scope, the journal publishes papers on both fundamentals and applications of mass spectrometry. Fundamental subjects include instrumentation principles, design, and demonstration, structures and chemical properties of gas-phase ions, studies of thermodynamic properties, ion spectroscopy, chemical kinetics, mechanisms of ionization, theories of ion fragmentation, cluster ions, and potential energy surfaces. In addition to full papers, the journal offers Communications, Application Notes, and Accounts and Perspectives