Juan Tan, Xinling Han, Shenting Li, Qiqi Wang, Limin Zhao, Ying Li, Su Duan, Luo Zhang
{"title":"Platelet-Activating Factor Disrupts the Nasal Epithelial Barrier Independently of the Platelet-Activating Factor Receptor Pathway.","authors":"Juan Tan, Xinling Han, Shenting Li, Qiqi Wang, Limin Zhao, Ying Li, Su Duan, Luo Zhang","doi":"10.4168/aair.2025.17.2.212","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Platelet-activating factor (PAF) mediates nasal congestion and rhinorrhea by affecting vascular permeability, but the underlying mechanisms remain unclear. Here, we sought to explore the effect of PAF on the nasal epithelial barrier in chronic rhinosinusitis with nasal polyps (CRSwNP).</p><p><strong>Methods: </strong>Human nasal epithelial cells (hNECs) were pre-treated with Apafant, a PAF receptor (PAFR) inhibitor, or MCC950, an NOD-like receptor protein 3 (NLRP3) inflammasome inhibitor, before PAF stimulation. The nasal epithelial barrier function was assessed by measuring the transepithelial electrical resistance (TER) and sodium fluorescein flux. Additionally, the expression of mRNAs and proteins of tight junctions were assessed.</p><p><strong>Results: </strong>PAF significantly decreased TER and enhanced the fluorescein flux permeability in air-liquid interface cultures of hNECs, while also downregulating the expression of ZO-1, occludin, claudin-1, and claudin-4. However, the disruptive effect of PAF on the nasal epithelial barrier was attenuated by MCC950, but not by Apafant. Furthermore, MCC950 inhibited PAF-induced NLRP3 activation and its downstream molecules, including caspase-1, ASC, interleukin (IL)-1β, and IL-18.</p><p><strong>Conclusions: </strong>Our findings indicate that PAF has the potential to disrupt the nasal epithelial barrier in CRSwNP and may be linked to NLRP3 activation, while PAFR is not essential for this process. This discovery helps to explain why PAFR antagonists are ineffective in blocking PAF-mediated inflammation in clinical settings.</p>","PeriodicalId":7547,"journal":{"name":"Allergy, Asthma & Immunology Research","volume":"17 2","pages":"212-225"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11982642/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Allergy, Asthma & Immunology Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4168/aair.2025.17.2.212","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ALLERGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Platelet-activating factor (PAF) mediates nasal congestion and rhinorrhea by affecting vascular permeability, but the underlying mechanisms remain unclear. Here, we sought to explore the effect of PAF on the nasal epithelial barrier in chronic rhinosinusitis with nasal polyps (CRSwNP).
Methods: Human nasal epithelial cells (hNECs) were pre-treated with Apafant, a PAF receptor (PAFR) inhibitor, or MCC950, an NOD-like receptor protein 3 (NLRP3) inflammasome inhibitor, before PAF stimulation. The nasal epithelial barrier function was assessed by measuring the transepithelial electrical resistance (TER) and sodium fluorescein flux. Additionally, the expression of mRNAs and proteins of tight junctions were assessed.
Results: PAF significantly decreased TER and enhanced the fluorescein flux permeability in air-liquid interface cultures of hNECs, while also downregulating the expression of ZO-1, occludin, claudin-1, and claudin-4. However, the disruptive effect of PAF on the nasal epithelial barrier was attenuated by MCC950, but not by Apafant. Furthermore, MCC950 inhibited PAF-induced NLRP3 activation and its downstream molecules, including caspase-1, ASC, interleukin (IL)-1β, and IL-18.
Conclusions: Our findings indicate that PAF has the potential to disrupt the nasal epithelial barrier in CRSwNP and may be linked to NLRP3 activation, while PAFR is not essential for this process. This discovery helps to explain why PAFR antagonists are ineffective in blocking PAF-mediated inflammation in clinical settings.
期刊介绍:
The journal features cutting-edge original research, brief communications, and state-of-the-art reviews in the specialties of allergy, asthma, and immunology, including clinical and experimental studies and instructive case reports. Contemporary reviews summarize information on topics for researchers and physicians in the fields of allergy and immunology. As of January 2017, AAIR do not accept case reports. However, if it is a clinically important case, authors can submit it in the form of letter to the Editor. Editorials and letters to the Editor explore controversial issues and encourage further discussion among physicians dealing with allergy, immunology, pediatric respirology, and related medical fields. AAIR also features topics in practice and management and recent advances in equipment and techniques for clinicians concerned with clinical manifestations of allergies and pediatric respiratory diseases.