Lumacaftor inhibits channel activity of rescued F508del cystic fibrosis transmembrane conductance regulator.

IF 3.6 2区 医学 Q1 PHYSIOLOGY
Adam D Ambrosetti, Zachary J Hagedorn, Taylor R Bono, Hui Wen, Rodney Nguyen, Kevin Rodriguez-Cruz, Judge Ali, Hayes Palacio, Aubrey J Phillips, Stephanie D Gilliland, Alana J Freeman, Jake Thompson, Lianwu Fu, Carmel M McNicholas, Steven M Rowe, X Robert Wang
{"title":"Lumacaftor inhibits channel activity of rescued F508del cystic fibrosis transmembrane conductance regulator.","authors":"Adam D Ambrosetti, Zachary J Hagedorn, Taylor R Bono, Hui Wen, Rodney Nguyen, Kevin Rodriguez-Cruz, Judge Ali, Hayes Palacio, Aubrey J Phillips, Stephanie D Gilliland, Alana J Freeman, Jake Thompson, Lianwu Fu, Carmel M McNicholas, Steven M Rowe, X Robert Wang","doi":"10.1152/ajplung.00287.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Lumacaftor, the corrector of Orkambi, enhances the processing of F508del cystic fibrosis transmembrane conductance regulator (CFTR), but its impact on the channel activity of rescued F508del CFTR (rF508del) is unclear. Using an electrode-based, real-time iodide efflux assay performed at room temperature, acute exposure to lumacaftor was shown to increase the processing of F508del CFTR without a proportional increase in channel activity in a CFBE41o-cell line stably expressing F508del CFTR (CFBE-DF). A similar effect was not observed on wild-type CFTR in a HEK293 cell line. At 37°C, rF508del channel activity is significantly inhibited in CFBE-DF cells by acute exposure to 5 µM lumacaftor, but not to 5 µM tezacaftor or 1 µM elexacaftor, the two correctors of Trikafta. Lumacaftor's inhibitory effect was characterized by a major left shift of the peak channel activity relative to the peak CFTR processing in the dose-response chart, which is absent for tezacaftor or elexacaftor. Ussing chamber analysis on polarized CFBE-DF cells reveals an inhibitory effect for lumacaftor on the forskolin- and ivacaftor-induced change in short-circuit current. Single channel patch clamp on HEK-DF cells shows that acute application of cytosolic lumacaftor significantly decreases rF508del channel open probability. Taken together, despite its strong corrector activity, lumacaftor inhibits rF508del channel activity, compromising the degree of functional rescue. This effect may contribute to the limited clinical efficacy of Orkambi.<b>NEW & NOTEWORTHY</b> Small-molecule correctors bind to F508del cystic fibrosis transmembrane conductance regulator (CFTR) and restore its trafficking to the plasma membrane to function as an anion channel. Despite its high efficacy as a corrector, lumacaftor inhibits the channel opening of rescued F508del CFTR, making it a weak CFTR modulator. The current work highlights the impact of CFTR correctors on the channel activity of rescued F508del CFTR as an important variable in the efficacy of modulator therapy.</p>","PeriodicalId":7593,"journal":{"name":"American journal of physiology. Lung cellular and molecular physiology","volume":" ","pages":"L832-L843"},"PeriodicalIF":3.6000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12173061/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Lung cellular and molecular physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajplung.00287.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Lumacaftor, the corrector of Orkambi, enhances the processing of F508del cystic fibrosis transmembrane conductance regulator (CFTR), but its impact on the channel activity of rescued F508del CFTR (rF508del) is unclear. Using an electrode-based, real-time iodide efflux assay performed at room temperature, acute exposure to lumacaftor was shown to increase the processing of F508del CFTR without a proportional increase in channel activity in a CFBE41o-cell line stably expressing F508del CFTR (CFBE-DF). A similar effect was not observed on wild-type CFTR in a HEK293 cell line. At 37°C, rF508del channel activity is significantly inhibited in CFBE-DF cells by acute exposure to 5 µM lumacaftor, but not to 5 µM tezacaftor or 1 µM elexacaftor, the two correctors of Trikafta. Lumacaftor's inhibitory effect was characterized by a major left shift of the peak channel activity relative to the peak CFTR processing in the dose-response chart, which is absent for tezacaftor or elexacaftor. Ussing chamber analysis on polarized CFBE-DF cells reveals an inhibitory effect for lumacaftor on the forskolin- and ivacaftor-induced change in short-circuit current. Single channel patch clamp on HEK-DF cells shows that acute application of cytosolic lumacaftor significantly decreases rF508del channel open probability. Taken together, despite its strong corrector activity, lumacaftor inhibits rF508del channel activity, compromising the degree of functional rescue. This effect may contribute to the limited clinical efficacy of Orkambi.NEW & NOTEWORTHY Small-molecule correctors bind to F508del cystic fibrosis transmembrane conductance regulator (CFTR) and restore its trafficking to the plasma membrane to function as an anion channel. Despite its high efficacy as a corrector, lumacaftor inhibits the channel opening of rescued F508del CFTR, making it a weak CFTR modulator. The current work highlights the impact of CFTR correctors on the channel activity of rescued F508del CFTR as an important variable in the efficacy of modulator therapy.

Lumacaftor抑制获救的F508del囊性纤维化跨膜电导调节因子的通道活性。
Orkambi的纠正剂Lumacaftor增强了F508del囊性纤维化跨膜传导调节因子(CFTR)的加工,但其对拯救的F508del CFTR (rF508del)通道活性的影响尚不清楚。在室温下进行的基于电极的实时碘化物外排试验显示,在稳定表达F508del CFTR (CFBE-DF)的cfbe410细胞系中,急性暴露于lumacaftor可以增加F508del CFTR的处理,而没有成比例地增加通道活性。在HEK293细胞系中,野生型CFTR未观察到类似的作用。在37°C时,急性暴露于5mM的lumacaftor,而不暴露于5mM的tezacaftor或1mM的elexaftor (Trikafta的两种校正剂),CFBE-DF细胞中的rF508del通道活性被显著抑制。Lumacaftor的抑制作用的特点是在剂量反应图中,相对于CFTR处理的峰值,通道活性峰值出现了明显的左移,而tezacaftor或elexaftor则没有这种情况。通过对极化CFBE-DF细胞的腔室分析,揭示了荧光因子对福斯克林和荧光因子诱导的短路电流变化的抑制作用。单通道膜片钳对HEK-DF细胞的作用表明,急性应用胞质发光因子可显著降低rF508del通道打开概率。综上所述,尽管lumacaftor具有很强的校正活性,但它抑制了rF508del通道的活性,损害了功能修复的程度。这种影响可能导致Orkambi的临床疗效有限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.20
自引率
4.10%
发文量
146
审稿时长
2 months
期刊介绍: The American Journal of Physiology-Lung Cellular and Molecular Physiology publishes original research covering the broad scope of molecular, cellular, and integrative aspects of normal and abnormal function of cells and components of the respiratory system. Areas of interest include conducting airways, pulmonary circulation, lung endothelial and epithelial cells, the pleura, neuroendocrine and immunologic cells in the lung, neural cells involved in control of breathing, and cells of the diaphragm and thoracic muscles. The processes to be covered in the Journal include gas-exchange, metabolic control at the cellular level, intracellular signaling, gene expression, genomics, macromolecules and their turnover, cell-cell and cell-matrix interactions, cell motility, secretory mechanisms, membrane function, surfactant, matrix components, mucus and lining materials, lung defenses, macrophage function, transport of salt, water and protein, development and differentiation of the respiratory system, and response to the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信