{"title":"Hepatitis B Virus Nucleocapsid Assembly.","authors":"Xupeng Hong, William M Schneider, Charles M Rice","doi":"10.1016/j.jmb.2025.169182","DOIUrl":null,"url":null,"abstract":"<p><p>Hepatitis B virus (HBV), the prototypical member of the Hepadnaviridae family, is a DNA virus that replicates its genome through reverse transcription of a pregenomic RNA (pgRNA) precursor. The selective packaging of pgRNA and viral polymerase (Pol) into assembling capsids formed by the viral core protein-a process known as nucleocapsid assembly-is an essential step in the HBV lifecycle. Advances in cellular and cell-free systems have provided significant insights into the mechanisms underlying capsid assembly, Pol binding to pgRNA, Pol-pgRNA packaging, and initiation of genome replication. However, the absence of a cell-free system capable of reconstituting selective HBV Pol-pgRNA packaging into fully assembled capsids leaves fundamental questions about nucleocapsid assembly unanswered. This review summarizes the current knowledge of HBV nucleocapsid assembly, focusing on the interplay between Pol-pgRNA interactions, capsid formation, and regulation by host factors. It also highlights the contribution of cellular and cell-free systems to these discoveries and underscores the need for new approaches that reconstitute the complete HBV nucleocapsid assembly process. With the growing interest in developing nucleocapsid assembly inhibitors, some of which are currently in clinical trials, targeting Pol-pgRNA interactions and nucleocapsid assembly represents a promising therapeutic strategy for curing chronic hepatitis B.</p>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":" ","pages":"169182"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jmb.2025.169182","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hepatitis B virus (HBV), the prototypical member of the Hepadnaviridae family, is a DNA virus that replicates its genome through reverse transcription of a pregenomic RNA (pgRNA) precursor. The selective packaging of pgRNA and viral polymerase (Pol) into assembling capsids formed by the viral core protein-a process known as nucleocapsid assembly-is an essential step in the HBV lifecycle. Advances in cellular and cell-free systems have provided significant insights into the mechanisms underlying capsid assembly, Pol binding to pgRNA, Pol-pgRNA packaging, and initiation of genome replication. However, the absence of a cell-free system capable of reconstituting selective HBV Pol-pgRNA packaging into fully assembled capsids leaves fundamental questions about nucleocapsid assembly unanswered. This review summarizes the current knowledge of HBV nucleocapsid assembly, focusing on the interplay between Pol-pgRNA interactions, capsid formation, and regulation by host factors. It also highlights the contribution of cellular and cell-free systems to these discoveries and underscores the need for new approaches that reconstitute the complete HBV nucleocapsid assembly process. With the growing interest in developing nucleocapsid assembly inhibitors, some of which are currently in clinical trials, targeting Pol-pgRNA interactions and nucleocapsid assembly represents a promising therapeutic strategy for curing chronic hepatitis B.
期刊介绍:
Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions.
Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.