Oladele T. Ojuromi, Abdulazeez O. Giwa, Anna Gardberg, Sandhya Subramanian, Peter J. Myler, Jan Abendroth, Bart Staker, Oluwatoyin A. Asojo
{"title":"Crystal structures of the putative endoribonuclease L-PSP from Entamoeba histolytica","authors":"Oladele T. Ojuromi, Abdulazeez O. Giwa, Anna Gardberg, Sandhya Subramanian, Peter J. Myler, Jan Abendroth, Bart Staker, Oluwatoyin A. Asojo","doi":"10.1107/S2053230X25003875","DOIUrl":null,"url":null,"abstract":"<p><i>Entamoeba histolytica</i> causes amebiasis, a neglected disease that kills ∼100 000 people globally each year. Due to emerging drug resistance, <i>E. histolytica</i> is one of the target organisms for structure-based drug discovery by the Seattle Structural Genomics Center for Infectious Disease (SSGCID). Purification, crystallization and three structures of the putative drug target endoribonuclease L-PSP from <i>E. histolytica</i> (EhL-PSP) are presented. EhL-PSP has a two-layer α/β-sandwich with structural homology to endoribonuclease L-PSP. All three structures reveal the prototypical YjgF/YER057c/UK114 family trimer topology with accessible allosteric active sites. Citrate molecules from the crystallization solution are bound to the allosteric site in two of the three reported structures. The large allosteric site of EhL-PSP is well conserved with bacterial YjgF/YER057c/UK114 family members and could be targeted for inhibition, drug discovery or repurposing.</p>","PeriodicalId":7029,"journal":{"name":"Acta crystallographica. Section F, Structural biology communications","volume":"81 6","pages":"226-234"},"PeriodicalIF":1.1000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta crystallographica. Section F, Structural biology communications","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1107/S2053230X25003875","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Entamoeba histolytica causes amebiasis, a neglected disease that kills ∼100 000 people globally each year. Due to emerging drug resistance, E. histolytica is one of the target organisms for structure-based drug discovery by the Seattle Structural Genomics Center for Infectious Disease (SSGCID). Purification, crystallization and three structures of the putative drug target endoribonuclease L-PSP from E. histolytica (EhL-PSP) are presented. EhL-PSP has a two-layer α/β-sandwich with structural homology to endoribonuclease L-PSP. All three structures reveal the prototypical YjgF/YER057c/UK114 family trimer topology with accessible allosteric active sites. Citrate molecules from the crystallization solution are bound to the allosteric site in two of the three reported structures. The large allosteric site of EhL-PSP is well conserved with bacterial YjgF/YER057c/UK114 family members and could be targeted for inhibition, drug discovery or repurposing.
期刊介绍:
Acta Crystallographica Section F is a rapid structural biology communications journal.
Articles on any aspect of structural biology, including structures determined using high-throughput methods or from iterative studies such as those used in the pharmaceutical industry, are welcomed by the journal.
The journal offers the option of open access, and all communications benefit from unlimited free use of colour illustrations and no page charges. Authors are encouraged to submit multimedia content for publication with their articles.
Acta Cryst. F has a dedicated online tool called publBio that is designed to make the preparation and submission of articles easier for authors.