Vascular EC-SOD limits the accumulation, proinflammatory profibrotic reprogramming, and hyaluronan binding of interstitial macrophages in hypoxia.

IF 3.6 2区 医学 Q1 PHYSIOLOGY
Caitlin V Lewis, Thi-Tina N Nguyen, Timothy E Porfilio, Samuel D Burciaga, Janelle N Posey, Mariah Jordan, Daniel Colon Hidalgo, Kurt R Stenmark, Claudia Mickael, Christina Sul, Rebecca E Oberley-Deegan, Cassidy Delaney, Eva S Nozik
{"title":"Vascular EC-SOD limits the accumulation, proinflammatory profibrotic reprogramming, and hyaluronan binding of interstitial macrophages in hypoxia.","authors":"Caitlin V Lewis, Thi-Tina N Nguyen, Timothy E Porfilio, Samuel D Burciaga, Janelle N Posey, Mariah Jordan, Daniel Colon Hidalgo, Kurt R Stenmark, Claudia Mickael, Christina Sul, Rebecca E Oberley-Deegan, Cassidy Delaney, Eva S Nozik","doi":"10.1152/ajplung.00399.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Dysregulated redox signaling contributes to pulmonary hypertension (PH) and vascular depletion of the redox enzyme extracellular superoxide dismutase (EC-SOD) from smooth muscle cells [EC-SOD SMC knockout (KO)] worsens chronic hypoxic PH. Given the important role of macrophages in PH, this study aimed to determine if interstitial macrophages (IMs) and their interactions with hyaluronan (HA), a component of extracellular matrix (ECM), are modulated by vascular EC-SOD. Floxed wild-type, EC-SOD SMC KO, and SOD mimetic- or vehicle-treated mice were exposed to hypobaric hypoxia [∼10% fraction of inspired oxygen ([Formula: see text])], for 4, 14, or 21 days. Using flow cytometry, we demonstrated that the transient increase in IMs at <i>day 4</i> was exacerbated in EC-SOD SMC KO mice and prevented with SOD mimetic pretreatment. Highlighting the importance of targeting vascular oxidative stress in the early response to hypoxia, pretreatment with a single dose of EC-SOD mimetic decreased right ventricular systolic pressure, right ventricular hypertrophy, and small vessel muscularization at <i>day 21</i>. To assess IM phenotypic reprogramming in hypoxia, RNA-seq was performed on flow-sorted IMs revealing baseline proinflammatory activation and enhanced activation of vascular and ECM remodeling pathways in response to hypoxia in EC-SOD SMC KO IMs compared with controls. To further investigate the ECM remodeling response, we quantified IMs expressing the lymphatic vessel endothelial hyaluronan receptor 1 (Lyve1), and IM-hyaluronan binding. Lyve1<sup>+</sup> IMs and Lyve1<sup>+</sup> HA<sup>+</sup> IMs were increased in response to hypoxia in EC-SOD SMC KO mice and accumulated in the perivascular space of the lung. In conclusion, vascular EC-SOD limits IM accumulation and proinflammatory profibrotic IM signaling, including perivascular accumulation of Lyve1<sup>+</sup> IMs and their binding to hyaluronan.<b>NEW & NOTEWORTHY</b> Expression of the redox enzyme EC-SOD limits PH severity. Using vascular-selective EC-SOD depletion and SOD mimetic treatment in chronic hypoxic PH, we demonstrated that EC-SOD limits the hypoxia-induced accumulation of IMs. IMs from mice with low vascular EC-SOD were proinflammatory at baseline and enhanced ECM remodeling pathway activation in response to hypoxia. We identified Lyve1<sup>+</sup> IMs as a perivascular, ECM-interacting subset that accumulate in hypoxia and could contribute to vascular remodeling in PH.</p>","PeriodicalId":7593,"journal":{"name":"American journal of physiology. Lung cellular and molecular physiology","volume":" ","pages":"L885-L900"},"PeriodicalIF":3.6000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Lung cellular and molecular physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajplung.00399.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Dysregulated redox signaling contributes to pulmonary hypertension (PH) and vascular depletion of the redox enzyme extracellular superoxide dismutase (EC-SOD) from smooth muscle cells [EC-SOD SMC knockout (KO)] worsens chronic hypoxic PH. Given the important role of macrophages in PH, this study aimed to determine if interstitial macrophages (IMs) and their interactions with hyaluronan (HA), a component of extracellular matrix (ECM), are modulated by vascular EC-SOD. Floxed wild-type, EC-SOD SMC KO, and SOD mimetic- or vehicle-treated mice were exposed to hypobaric hypoxia [∼10% fraction of inspired oxygen ([Formula: see text])], for 4, 14, or 21 days. Using flow cytometry, we demonstrated that the transient increase in IMs at day 4 was exacerbated in EC-SOD SMC KO mice and prevented with SOD mimetic pretreatment. Highlighting the importance of targeting vascular oxidative stress in the early response to hypoxia, pretreatment with a single dose of EC-SOD mimetic decreased right ventricular systolic pressure, right ventricular hypertrophy, and small vessel muscularization at day 21. To assess IM phenotypic reprogramming in hypoxia, RNA-seq was performed on flow-sorted IMs revealing baseline proinflammatory activation and enhanced activation of vascular and ECM remodeling pathways in response to hypoxia in EC-SOD SMC KO IMs compared with controls. To further investigate the ECM remodeling response, we quantified IMs expressing the lymphatic vessel endothelial hyaluronan receptor 1 (Lyve1), and IM-hyaluronan binding. Lyve1+ IMs and Lyve1+ HA+ IMs were increased in response to hypoxia in EC-SOD SMC KO mice and accumulated in the perivascular space of the lung. In conclusion, vascular EC-SOD limits IM accumulation and proinflammatory profibrotic IM signaling, including perivascular accumulation of Lyve1+ IMs and their binding to hyaluronan.NEW & NOTEWORTHY Expression of the redox enzyme EC-SOD limits PH severity. Using vascular-selective EC-SOD depletion and SOD mimetic treatment in chronic hypoxic PH, we demonstrated that EC-SOD limits the hypoxia-induced accumulation of IMs. IMs from mice with low vascular EC-SOD were proinflammatory at baseline and enhanced ECM remodeling pathway activation in response to hypoxia. We identified Lyve1+ IMs as a perivascular, ECM-interacting subset that accumulate in hypoxia and could contribute to vascular remodeling in PH.

血管EC-SOD限制缺氧条件下间质巨噬细胞的积聚、促炎纤维化重编程和透明质酸结合。
氧化还原信号失调导致肺动脉高压(PH)和平滑肌细胞(EC-SOD SMC KO)氧化还原酶EC-SOD的血管耗竭恶化慢性缺氧PH。鉴于巨噬细胞在PH中的重要作用,本研究旨在确定间质巨噬细胞(IMs)及其与细胞外基质(ECM)成分透明质酸的相互作用是否受到血管EC-SOD的调节。将固定野生型(WT)、EC-SOD SMC KO和SOD模拟或载体处理的小鼠暴露于低压缺氧(~10% FiO2)中4、14或21天。通过流式细胞术,我们发现EC-SOD SMC KO小鼠第4天的短暂性IMs增加加剧,并通过模拟SOD预处理加以阻止。为了强调在缺氧早期反应中靶向血管氧化应激的重要性,在第21天,单剂量EC-SOD模拟治疗降低了右心室收缩压、右心室肥厚和小血管肌肉化。为了评估缺氧条件下IM的表型重编程,研究人员对血流分类的IM进行了RNAseq检测,发现与对照组相比,EC-SOD SMC KO IM在缺氧条件下的基线促炎激活和血管和ECM重塑途径的增强激活。为了进一步研究ECM重塑反应,我们量化了表达透明质酸受体Lyve1的im,以及im与透明质酸的结合。在EC-SOD SMC KO小鼠中,Lyve1+IMs和Lyve1+HA+IMs在缺氧条件下升高,并在肺血管周围空间积累。总之,血管EC-SOD限制了IM的积累和促炎促纤维化IM信号,包括血管周围Lyve1+IMs的积累及其与透明质酸的结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.20
自引率
4.10%
发文量
146
审稿时长
2 months
期刊介绍: The American Journal of Physiology-Lung Cellular and Molecular Physiology publishes original research covering the broad scope of molecular, cellular, and integrative aspects of normal and abnormal function of cells and components of the respiratory system. Areas of interest include conducting airways, pulmonary circulation, lung endothelial and epithelial cells, the pleura, neuroendocrine and immunologic cells in the lung, neural cells involved in control of breathing, and cells of the diaphragm and thoracic muscles. The processes to be covered in the Journal include gas-exchange, metabolic control at the cellular level, intracellular signaling, gene expression, genomics, macromolecules and their turnover, cell-cell and cell-matrix interactions, cell motility, secretory mechanisms, membrane function, surfactant, matrix components, mucus and lining materials, lung defenses, macrophage function, transport of salt, water and protein, development and differentiation of the respiratory system, and response to the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信