Srijit Seal, Manas Mahale, Miguel García-Ortegón, Chaitanya K Joshi, Layla Hosseini-Gerami, Alex Beatson, Matthew Greenig, Mrinal Shekhar, Arijit Patra, Caroline Weis, Arash Mehrjou, Adrien Badré, Brianna Paisley, Rhiannon Lowe, Shantanu Singh, Falgun Shah, Bjarki Johannesson, Dominic Williams, David Rouquie, Djork-Arné Clevert, Patrick Schwab, Nicola Richmond, Christos A Nicolaou, Raymond J Gonzalez, Russell Naven, Carolin Schramm, Lewis R Vidler, Kamel Mansouri, W Patrick Walters, Deidre Dalmas Wilk, Ola Spjuth, Anne E Carpenter, Andreas Bender
{"title":"Machine Learning for Toxicity Prediction Using Chemical Structures: Pillars for Success in the Real World.","authors":"Srijit Seal, Manas Mahale, Miguel García-Ortegón, Chaitanya K Joshi, Layla Hosseini-Gerami, Alex Beatson, Matthew Greenig, Mrinal Shekhar, Arijit Patra, Caroline Weis, Arash Mehrjou, Adrien Badré, Brianna Paisley, Rhiannon Lowe, Shantanu Singh, Falgun Shah, Bjarki Johannesson, Dominic Williams, David Rouquie, Djork-Arné Clevert, Patrick Schwab, Nicola Richmond, Christos A Nicolaou, Raymond J Gonzalez, Russell Naven, Carolin Schramm, Lewis R Vidler, Kamel Mansouri, W Patrick Walters, Deidre Dalmas Wilk, Ola Spjuth, Anne E Carpenter, Andreas Bender","doi":"10.1021/acs.chemrestox.5c00033","DOIUrl":null,"url":null,"abstract":"<p><p>Machine learning (ML) is increasingly valuable for predicting molecular properties and toxicity in drug discovery. However, toxicity-related end points have always been challenging to evaluate experimentally with respect to <i>in vivo</i> translation due to the required resources for human and animal studies; this has impacted data availability in the field. ML can augment or even potentially replace traditional experimental processes depending on the project phase and specific goals of the prediction. For instance, models can be used to select promising compounds for on-target effects or to deselect those with undesirable characteristics (e.g., off-target or ineffective due to unfavorable pharmacokinetics). However, reliance on ML is not without risks, due to biases stemming from nonrepresentative training data, incompatible choice of algorithm to represent the underlying data, or poor model building and validation approaches. This might lead to inaccurate predictions, misinterpretation of the confidence in ML predictions, and ultimately suboptimal decision-making. Hence, understanding the predictive validity of ML models is of utmost importance to enable faster drug development timelines while improving the quality of decisions. This perspective emphasizes the need to enhance the understanding and application of machine learning models in drug discovery, focusing on well-defined data sets for toxicity prediction based on small molecule structures. We focus on five crucial pillars for success with ML-driven molecular property and toxicity prediction: (1) data set selection, (2) structural representations, (3) model algorithm, (4) model validation, and (5) translation of predictions to decision-making. Understanding these key pillars will foster collaboration and coordination between ML researchers and toxicologists, which will help to advance drug discovery and development.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":"759-807"},"PeriodicalIF":3.7000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12093382/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Research in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.chemrestox.5c00033","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Machine learning (ML) is increasingly valuable for predicting molecular properties and toxicity in drug discovery. However, toxicity-related end points have always been challenging to evaluate experimentally with respect to in vivo translation due to the required resources for human and animal studies; this has impacted data availability in the field. ML can augment or even potentially replace traditional experimental processes depending on the project phase and specific goals of the prediction. For instance, models can be used to select promising compounds for on-target effects or to deselect those with undesirable characteristics (e.g., off-target or ineffective due to unfavorable pharmacokinetics). However, reliance on ML is not without risks, due to biases stemming from nonrepresentative training data, incompatible choice of algorithm to represent the underlying data, or poor model building and validation approaches. This might lead to inaccurate predictions, misinterpretation of the confidence in ML predictions, and ultimately suboptimal decision-making. Hence, understanding the predictive validity of ML models is of utmost importance to enable faster drug development timelines while improving the quality of decisions. This perspective emphasizes the need to enhance the understanding and application of machine learning models in drug discovery, focusing on well-defined data sets for toxicity prediction based on small molecule structures. We focus on five crucial pillars for success with ML-driven molecular property and toxicity prediction: (1) data set selection, (2) structural representations, (3) model algorithm, (4) model validation, and (5) translation of predictions to decision-making. Understanding these key pillars will foster collaboration and coordination between ML researchers and toxicologists, which will help to advance drug discovery and development.
期刊介绍:
Chemical Research in Toxicology publishes Articles, Rapid Reports, Chemical Profiles, Reviews, Perspectives, Letters to the Editor, and ToxWatch on a wide range of topics in Toxicology that inform a chemical and molecular understanding and capacity to predict biological outcomes on the basis of structures and processes. The overarching goal of activities reported in the Journal are to provide knowledge and innovative approaches needed to promote intelligent solutions for human safety and ecosystem preservation. The journal emphasizes insight concerning mechanisms of toxicity over phenomenological observations. It upholds rigorous chemical, physical and mathematical standards for characterization and application of modern techniques.