{"title":"Determining the Role of Electrostatics in the Making and Breaking of the Caprin1-ATP Nanocondensate.","authors":"Maria Tsanai, Teresa Head-Gordon","doi":"10.1021/acs.jpcb.5c01925","DOIUrl":null,"url":null,"abstract":"<p><p>We employ a multiscale computational approach to investigate the condensation process of the C-terminal low-complexity region of the Caprin1 protein as a function of increasing ATP concentration for three states: the initial mixed state, nanocondensate formation, and dissolution of the droplet as it reenters the mixed state. We show that upon condensation, ATP assembles via pi-pi interactions, resulting in the formation of a large cluster of stacked ATP molecules stabilized by sodium counterions. The surface of the ATP assembly interacts with the arginine-rich regions of the Caprin1 protein, particularly with its N-terminus, to promote the complete phase-separated droplet on a length scale of tens of nanometers. In order to understand droplet stability, we analyzed the near-surface electrostatic potential (NS-ESP) of Caprin1 and estimated the zeta potential of the Caprin1-ATP assemblies. We predict a positive NS-ESP at the Caprin1 surface for low ATP concentrations that defines the early mixed state, in excellent agreement with the NS-ESP obtained from NMR experiments using paramagnetic resonance enhancement. By contrast, the NS-ESP of Caprin1 at the surface of the nanocondensate at moderate levels of ATP is highly negative compared to that at the mixed state, and estimates of a large zeta potential outside the highly dense region of charge further explain the remarkable stability of this phase-separated droplet assembly. As ATP concentrations rise further, the strong electrostatic forces needed for nanocondensate stability are replaced by weaker Caprin1-ATP interactions that drive the re-entry into the mixed state that exhibits a much lower zeta potential.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":"4705-4714"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.5c01925","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We employ a multiscale computational approach to investigate the condensation process of the C-terminal low-complexity region of the Caprin1 protein as a function of increasing ATP concentration for three states: the initial mixed state, nanocondensate formation, and dissolution of the droplet as it reenters the mixed state. We show that upon condensation, ATP assembles via pi-pi interactions, resulting in the formation of a large cluster of stacked ATP molecules stabilized by sodium counterions. The surface of the ATP assembly interacts with the arginine-rich regions of the Caprin1 protein, particularly with its N-terminus, to promote the complete phase-separated droplet on a length scale of tens of nanometers. In order to understand droplet stability, we analyzed the near-surface electrostatic potential (NS-ESP) of Caprin1 and estimated the zeta potential of the Caprin1-ATP assemblies. We predict a positive NS-ESP at the Caprin1 surface for low ATP concentrations that defines the early mixed state, in excellent agreement with the NS-ESP obtained from NMR experiments using paramagnetic resonance enhancement. By contrast, the NS-ESP of Caprin1 at the surface of the nanocondensate at moderate levels of ATP is highly negative compared to that at the mixed state, and estimates of a large zeta potential outside the highly dense region of charge further explain the remarkable stability of this phase-separated droplet assembly. As ATP concentrations rise further, the strong electrostatic forces needed for nanocondensate stability are replaced by weaker Caprin1-ATP interactions that drive the re-entry into the mixed state that exhibits a much lower zeta potential.
期刊介绍:
An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.