Feyza Alyu Altinok, Michele Petrella, Alessio Masi, Anna Maria Borruto, Roberto Ciccocioppo, Yusuf Ozturk
{"title":"Exploring the supraspinal antihyperalgesic effects of levetiracetam in the rat model of chronic constriction injury.","authors":"Feyza Alyu Altinok, Michele Petrella, Alessio Masi, Anna Maria Borruto, Roberto Ciccocioppo, Yusuf Ozturk","doi":"10.1139/cjpp-2024-0302","DOIUrl":null,"url":null,"abstract":"<p><p>Neuropathic pain severely impacts quality of life and effective treatments are needed. To address this, the present study investigated the antihyperalgesic mechanisms of levetiracetam administered at the supraspinal level, together with its effects on ion channel activities. The ventral posterolateral nucleus of the thalamus was selected as the location for micro-injection. Thermal hyperalgesia and mechanical allodynia were assessed via in vivo experiments using the Hargreave's and e-Von Frey apparatus, respectively. Levetiracetam displayed statistically meaningful time and dose-dependent effects in the chronic constriction injury model, with statistical probability values less than 0.05. It was discovered that the antihyperalgesic effects were more pronounced in mechanical allodynia. Electrophysiological studies conducted through whole-cell patch clamp recordings indicated that levetiracetam tended to activate or increase the permeability of one or more channels for ion flow that are active only at hyperpolarized membrane potentials (-130 to -90 mV), suggesting the potential participation of hyperpolarization-activated cyclic nucleotide-gated, inwardly-rectifying K<sup>+</sup>, or G protein-gated inwardly-rectifying K<sup>+</sup> channels. The findings could guide future drug development studies towards levetiracetam and its derivatives as effective treatments for neuropathic pain.</p>","PeriodicalId":9520,"journal":{"name":"Canadian journal of physiology and pharmacology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian journal of physiology and pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1139/cjpp-2024-0302","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Neuropathic pain severely impacts quality of life and effective treatments are needed. To address this, the present study investigated the antihyperalgesic mechanisms of levetiracetam administered at the supraspinal level, together with its effects on ion channel activities. The ventral posterolateral nucleus of the thalamus was selected as the location for micro-injection. Thermal hyperalgesia and mechanical allodynia were assessed via in vivo experiments using the Hargreave's and e-Von Frey apparatus, respectively. Levetiracetam displayed statistically meaningful time and dose-dependent effects in the chronic constriction injury model, with statistical probability values less than 0.05. It was discovered that the antihyperalgesic effects were more pronounced in mechanical allodynia. Electrophysiological studies conducted through whole-cell patch clamp recordings indicated that levetiracetam tended to activate or increase the permeability of one or more channels for ion flow that are active only at hyperpolarized membrane potentials (-130 to -90 mV), suggesting the potential participation of hyperpolarization-activated cyclic nucleotide-gated, inwardly-rectifying K+, or G protein-gated inwardly-rectifying K+ channels. The findings could guide future drug development studies towards levetiracetam and its derivatives as effective treatments for neuropathic pain.
期刊介绍:
Published since 1929, the Canadian Journal of Physiology and Pharmacology is a monthly journal that reports current research in all aspects of physiology, nutrition, pharmacology, and toxicology, contributed by recognized experts and scientists. It publishes symposium reviews and award lectures and occasionally dedicates entire issues or portions of issues to subjects of special interest to its international readership. The journal periodically publishes a “Made In Canada” special section that features invited review articles from internationally recognized scientists who have received some of their training in Canada.