{"title":"DMGAT: predicting ncRNA-drug resistance associations based on diffusion map and heterogeneous graph attention network.","authors":"Tingyu Liu, Qiuhao Chen, Renjie Liu, Yuzhi Sun, Yadong Wang, Yan Zhu, Tianyi Zhao","doi":"10.1093/bib/bbaf179","DOIUrl":null,"url":null,"abstract":"<p><p>Non-coding RNAs (ncRNAs) play crucial roles in drug resistance and sensitivity, making them important biomarkers and therapeutic targets. However, predicting ncRNA-drug associations is challenging due to issues such as dataset imbalance and sparsity, limiting the identification of robust biomarkers. Existing models often fall short in capturing local and global sequence information, limiting the reliability of predictions. This study introduces DMGAT (diffusion map and heterogeneous graph attention network), a novel deep learning model designed to predict ncRNA-drug associations. DMGAT integrates diffusion maps for sequence embedding, graph convolutional networks for feature extraction, and GAT for heterogeneous information fusion. To address dataset imbalance, the model incorporates sensitivity associations and employs a random forest classifier to select reliable negative samples. DMGAT embeds ncRNA sequences and drug SMILES using the word2vec technique, capturing local and global sequence information. The model constructs a heterogeneous network by combining sequence similarity and Gaussian Interaction Profile kernel similarity, providing a comprehensive representation of ncRNA-drug interactions. Evaluated through five-fold cross-validation on a curated dataset from NoncoRNA and ncDR, DMGAT outperforms seven state-of-the-art methods, achieving the highest area under the receiver operating characteristic curve (0.8964), area under the precision-recall curve (0.8984), recall (0.9576), and F1-score (0.8285). The raw data are released to Zenodo with identifier 13929676. The source code of DMGAT is available at https://github.com/liutingyu0616/DMGAT/tree/main.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 2","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12008124/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf179","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Non-coding RNAs (ncRNAs) play crucial roles in drug resistance and sensitivity, making them important biomarkers and therapeutic targets. However, predicting ncRNA-drug associations is challenging due to issues such as dataset imbalance and sparsity, limiting the identification of robust biomarkers. Existing models often fall short in capturing local and global sequence information, limiting the reliability of predictions. This study introduces DMGAT (diffusion map and heterogeneous graph attention network), a novel deep learning model designed to predict ncRNA-drug associations. DMGAT integrates diffusion maps for sequence embedding, graph convolutional networks for feature extraction, and GAT for heterogeneous information fusion. To address dataset imbalance, the model incorporates sensitivity associations and employs a random forest classifier to select reliable negative samples. DMGAT embeds ncRNA sequences and drug SMILES using the word2vec technique, capturing local and global sequence information. The model constructs a heterogeneous network by combining sequence similarity and Gaussian Interaction Profile kernel similarity, providing a comprehensive representation of ncRNA-drug interactions. Evaluated through five-fold cross-validation on a curated dataset from NoncoRNA and ncDR, DMGAT outperforms seven state-of-the-art methods, achieving the highest area under the receiver operating characteristic curve (0.8964), area under the precision-recall curve (0.8984), recall (0.9576), and F1-score (0.8285). The raw data are released to Zenodo with identifier 13929676. The source code of DMGAT is available at https://github.com/liutingyu0616/DMGAT/tree/main.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.