Gabin Drouard, Sannimari Suhonen, Aino Heikkinen, Zhiyang Wang, Jaakko Kaprio, Miina Ollikainen
{"title":"Multi-Omic Associations of Epigenetic Age Acceleration Are Heterogeneously Shaped by Genetic and Environmental Influences.","authors":"Gabin Drouard, Sannimari Suhonen, Aino Heikkinen, Zhiyang Wang, Jaakko Kaprio, Miina Ollikainen","doi":"10.1111/acel.70088","DOIUrl":null,"url":null,"abstract":"<p><p>Connections between the multi-ome and epigenetic age acceleration (EAA), and especially whether these are influenced by genetic or environmental factors, remain underexplored. We therefore quantified associations between the multi-ome comprising four layers-the proteome, metabolome, external exposome (here, sociodemographic factors), and specific exposome (here, lifestyle)-with six different EAA estimates. Two twin cohorts were used in a discovery-replication scheme, comprising, respectively, young (N = 642; mean age = 22.3) and older (N = 354; mean age = 62.3) twins. Within-pair twin designs were used to assess genetic and environmental effects on associations. We identified 40 multi-omic factors, of which 28 were proteins, associated with EAA in the young twins while adjusting for sex, smoking, and body mass index. Within-pair analyses revealed that genetic confounding influenced these associations heterogeneously, with six multi-omic factors -matrix metalloproteinase 9, complement component C6, histidine, glycoprotein acetyls, lactate, and neighborhood percentage of nonagenarians- remaining significantly associated with EAA, independent of genetic effects. Replication analyses showed that some associations assessed in young twins were consistent in older twins. Our study highlights the differential influence of genetic effects on the associations between the multi-ome and EAA and shows that some, but not all, of the associations persist into adulthood.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e70088"},"PeriodicalIF":7.1000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/acel.70088","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Connections between the multi-ome and epigenetic age acceleration (EAA), and especially whether these are influenced by genetic or environmental factors, remain underexplored. We therefore quantified associations between the multi-ome comprising four layers-the proteome, metabolome, external exposome (here, sociodemographic factors), and specific exposome (here, lifestyle)-with six different EAA estimates. Two twin cohorts were used in a discovery-replication scheme, comprising, respectively, young (N = 642; mean age = 22.3) and older (N = 354; mean age = 62.3) twins. Within-pair twin designs were used to assess genetic and environmental effects on associations. We identified 40 multi-omic factors, of which 28 were proteins, associated with EAA in the young twins while adjusting for sex, smoking, and body mass index. Within-pair analyses revealed that genetic confounding influenced these associations heterogeneously, with six multi-omic factors -matrix metalloproteinase 9, complement component C6, histidine, glycoprotein acetyls, lactate, and neighborhood percentage of nonagenarians- remaining significantly associated with EAA, independent of genetic effects. Replication analyses showed that some associations assessed in young twins were consistent in older twins. Our study highlights the differential influence of genetic effects on the associations between the multi-ome and EAA and shows that some, but not all, of the associations persist into adulthood.
Aging CellBiochemistry, Genetics and Molecular Biology-Cell Biology
自引率
2.60%
发文量
212
期刊介绍:
Aging Cell is an Open Access journal that focuses on the core aspects of the biology of aging, encompassing the entire spectrum of geroscience. The journal's content is dedicated to publishing research that uncovers the mechanisms behind the aging process and explores the connections between aging and various age-related diseases. This journal aims to provide a comprehensive understanding of the biological underpinnings of aging and its implications for human health.
The journal is widely recognized and its content is abstracted and indexed by numerous databases and services, which facilitates its accessibility and impact in the scientific community. These include:
Academic Search (EBSCO Publishing)
Academic Search Alumni Edition (EBSCO Publishing)
Academic Search Premier (EBSCO Publishing)
Biological Science Database (ProQuest)
CAS: Chemical Abstracts Service (ACS)
Embase (Elsevier)
InfoTrac (GALE Cengage)
Ingenta Select
ISI Alerting Services
Journal Citation Reports/Science Edition (Clarivate Analytics)
MEDLINE/PubMed (NLM)
Natural Science Collection (ProQuest)
PubMed Dietary Supplement Subset (NLM)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
Web of Science (Clarivate Analytics)
Being indexed in these databases ensures that the research published in Aging Cell is discoverable by researchers, clinicians, and other professionals interested in the field of aging and its associated health issues. This broad coverage helps to disseminate the journal's findings and contributes to the advancement of knowledge in geroscience.