Damien Leleu, Thomas Pilot, Léa Mangin, Kevin Van Dongen, Lil Proukhnitzky, Damien Denimal, Maxime Samson, Aline Laubriet, Eric Steinmetz, Mickael Rialland, Léa Pierre, Emma Groetz, Jean-Paul Pais de Barros, Thomas Gautier, Charles Thomas, David Masson
{"title":"Inhibition of LXR Signaling in Human Foam Cells Impairs Macrophage-to-Endothelial Cell Cross Talk and Promotes Endothelial Cell Inflammation.","authors":"Damien Leleu, Thomas Pilot, Léa Mangin, Kevin Van Dongen, Lil Proukhnitzky, Damien Denimal, Maxime Samson, Aline Laubriet, Eric Steinmetz, Mickael Rialland, Léa Pierre, Emma Groetz, Jean-Paul Pais de Barros, Thomas Gautier, Charles Thomas, David Masson","doi":"10.1161/ATVBAHA.125.322448","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>During atherogenesis, macrophages turn into foam cells by engulfing lipids present within the atheroma plaques. The shift of foam cells toward proinflammatory or anti-inflammatory phenotypes, a critical step in disease progression, is still poorly understood. LXRs (liver X receptors) play a pivotal role in the macrophage response to lipid, promoting the expression of key genes of cholesterol efflux, mitigating intracellular cholesterol accumulation. LXRs also exert balanced actions on inflammation in human macrophages, displaying both proinflammatory and anti-inflammatory effects.</p><p><strong>Methods: </strong>Our study explored the role of LXRs in the functional response of human macrophage to lipid-rich plaque environment. We used primary human macrophages treated with atheroma plaque extracts and assessed the impact of pharmacological LXR inhibition by GSK2033 on cholesterol homeostasis and inflammatory response. Ultimately, we evaluated macrophage and endothelial cell cross talk by assessing the impact of macrophage-conditioned supernatants on the human endothelial cell.</p><p><strong>Results: </strong>LXR inhibition by GSK2033 resulted in increased levels of cholesterol and oxysterols in human macrophages, alongside notable changes in the cholesterol ester profile. This was accompanied by heightened secretion of proinflammatory cytokines such as IL (interleukin)-6 and TNFα (tumor necrosis factor-α), despite a transcriptional repression of IL-1β. Conditioned media from GSK2033-treated macrophages more effectively activated ICAM-1 (intercellular adhesion molecule-1) and CCL2 (C-C motif ligand 2) expression in endothelial cells.</p><p><strong>Conclusions: </strong>Our findings illustrate the intricate relationship between LXR function, cholesterol metabolism, and inflammation in human macrophages. While LXR is required for the proper handling of plaque lipids by macrophages, the differential regulation of IL-1β versus IL-6/TNFα secretion by LXRs could be challenging for potential pharmacological interventions.</p>","PeriodicalId":8401,"journal":{"name":"Arteriosclerosis, Thrombosis, and Vascular Biology","volume":" ","pages":"910-927"},"PeriodicalIF":7.4000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12094261/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arteriosclerosis, Thrombosis, and Vascular Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/ATVBAHA.125.322448","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: During atherogenesis, macrophages turn into foam cells by engulfing lipids present within the atheroma plaques. The shift of foam cells toward proinflammatory or anti-inflammatory phenotypes, a critical step in disease progression, is still poorly understood. LXRs (liver X receptors) play a pivotal role in the macrophage response to lipid, promoting the expression of key genes of cholesterol efflux, mitigating intracellular cholesterol accumulation. LXRs also exert balanced actions on inflammation in human macrophages, displaying both proinflammatory and anti-inflammatory effects.
Methods: Our study explored the role of LXRs in the functional response of human macrophage to lipid-rich plaque environment. We used primary human macrophages treated with atheroma plaque extracts and assessed the impact of pharmacological LXR inhibition by GSK2033 on cholesterol homeostasis and inflammatory response. Ultimately, we evaluated macrophage and endothelial cell cross talk by assessing the impact of macrophage-conditioned supernatants on the human endothelial cell.
Results: LXR inhibition by GSK2033 resulted in increased levels of cholesterol and oxysterols in human macrophages, alongside notable changes in the cholesterol ester profile. This was accompanied by heightened secretion of proinflammatory cytokines such as IL (interleukin)-6 and TNFα (tumor necrosis factor-α), despite a transcriptional repression of IL-1β. Conditioned media from GSK2033-treated macrophages more effectively activated ICAM-1 (intercellular adhesion molecule-1) and CCL2 (C-C motif ligand 2) expression in endothelial cells.
Conclusions: Our findings illustrate the intricate relationship between LXR function, cholesterol metabolism, and inflammation in human macrophages. While LXR is required for the proper handling of plaque lipids by macrophages, the differential regulation of IL-1β versus IL-6/TNFα secretion by LXRs could be challenging for potential pharmacological interventions.
期刊介绍:
The journal "Arteriosclerosis, Thrombosis, and Vascular Biology" (ATVB) is a scientific publication that focuses on the fields of vascular biology, atherosclerosis, and thrombosis. It is a peer-reviewed journal that publishes original research articles, reviews, and other scholarly content related to these areas. The journal is published by the American Heart Association (AHA) and the American Stroke Association (ASA).
The journal was published bi-monthly until January 1992, after which it transitioned to a monthly publication schedule. The journal is aimed at a professional audience, including academic cardiologists, vascular biologists, physiologists, pharmacologists and hematologists.