Juan J Romero, Eleanor W Jenkins, Marc R Birtwistle, Scott M Husson
{"title":"Techno-economic analysis of membrane-based continuous capture chromatography platforms for large-scale antibody production.","authors":"Juan J Romero, Eleanor W Jenkins, Marc R Birtwistle, Scott M Husson","doi":"10.1002/btpr.70033","DOIUrl":null,"url":null,"abstract":"<p><p>Continuous manufacturing platforms and membrane chromatography are process technologies with the potential to reduce production costs and minimize process variability in monoclonal antibody production. This study presents a simulation and optimization framework to perform techno-economic analyses of these strategies. Multi-objective optimization was used to compare batch and continuous multicolumn operating modes and membrane and resin process alternatives, revealing performance differences in productivity and cost of goods attributed to variations in dynamic binding capacity, media geometry, and process residence time. From the set of optimal process configurations, we selected one membrane and one resin platform alternative yielding the highest net present values to undergo sensitivity analyses involving variations in batch cadence and product selling price. For the scenarios considered in this work, membrane continuous platforms showed benefits in the cost of goods and process mass intensity. Their shorter residence time compared to resins positions them as a viable alternative for single-use capture chromatography. Moreover, this low residence time makes membrane platforms more flexible to changes in throughput, an essential feature for integrating capture into fully continuous processes.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":" ","pages":"e70033"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Progress","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/btpr.70033","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Continuous manufacturing platforms and membrane chromatography are process technologies with the potential to reduce production costs and minimize process variability in monoclonal antibody production. This study presents a simulation and optimization framework to perform techno-economic analyses of these strategies. Multi-objective optimization was used to compare batch and continuous multicolumn operating modes and membrane and resin process alternatives, revealing performance differences in productivity and cost of goods attributed to variations in dynamic binding capacity, media geometry, and process residence time. From the set of optimal process configurations, we selected one membrane and one resin platform alternative yielding the highest net present values to undergo sensitivity analyses involving variations in batch cadence and product selling price. For the scenarios considered in this work, membrane continuous platforms showed benefits in the cost of goods and process mass intensity. Their shorter residence time compared to resins positions them as a viable alternative for single-use capture chromatography. Moreover, this low residence time makes membrane platforms more flexible to changes in throughput, an essential feature for integrating capture into fully continuous processes.
期刊介绍:
Biotechnology Progress , an official, bimonthly publication of the American Institute of Chemical Engineers and its technological community, the Society for Biological Engineering, features peer-reviewed research articles, reviews, and descriptions of emerging techniques for the development and design of new processes, products, and devices for the biotechnology, biopharmaceutical and bioprocess industries.
Widespread interest includes application of biological and engineering principles in fields such as applied cellular physiology and metabolic engineering, biocatalysis and bioreactor design, bioseparations and downstream processing, cell culture and tissue engineering, biosensors and process control, bioinformatics and systems biology, biomaterials and artificial organs, stem cell biology and genetics, and plant biology and food science. Manuscripts concerning the design of related processes, products, or devices are also encouraged. Four types of manuscripts are printed in the Journal: Research Papers, Topical or Review Papers, Letters to the Editor, and R & D Notes.