Xingjian Gao, Jiarui Li, Xinxuan Liu, Qianqian Peng, Han Jing, Sibte Hadi, Andrew E Teschendorff, Sijia Wang, Fan Liu
{"title":"FastQTLmapping: an ultra-fast and memory efficient package for mQTL-like analysis.","authors":"Xingjian Gao, Jiarui Li, Xinxuan Liu, Qianqian Peng, Han Jing, Sibte Hadi, Andrew E Teschendorff, Sijia Wang, Fan Liu","doi":"10.1186/s12859-025-06130-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>FastQTLmapping addresses the need for an ultra-fast and memory-efficient solver capable of handling exhaustive multiple regression analysis with a vast number of dependent and explanatory variables, including covariates. This challenge is especially pronounced in methylation quantitative trait loci (mQTL)-like analysis, which typically involves high-dimensional genetic and epigenetic data.</p><p><strong>Results: </strong>FastQTLmapping is a precompiled C++ software solution accelerated by Intel MKL and GSL, freely available at https://github.com/Fun-Gene/fastQTLmapping . Compared to state-of-the-art methods (MatrixEQTL, FastQTL, and TensorQTL), fastQTLmapping demonstrated an order of magnitude speed improvement, coupled with a marked reduction in peak memory usage. In a large dataset consisting of 3500 individuals, 8 million SNPs, 0.8 million CpGs, and 20 covariates, fastQTLmapping completed the entire mQTL analysis in 4.5 h with only 13.1 GB peak memory usage.</p><p><strong>Conclusions: </strong>FastQTLmapping effectively expedites comprehensive mQTL analyses by providing a robust and generic approach that accommodates large-scale genomic datasets with covariates. This solution has the potential to streamline mQTL-like studies and inform future method development for efficient computational genomics.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"112"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12036243/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-025-06130-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: FastQTLmapping addresses the need for an ultra-fast and memory-efficient solver capable of handling exhaustive multiple regression analysis with a vast number of dependent and explanatory variables, including covariates. This challenge is especially pronounced in methylation quantitative trait loci (mQTL)-like analysis, which typically involves high-dimensional genetic and epigenetic data.
Results: FastQTLmapping is a precompiled C++ software solution accelerated by Intel MKL and GSL, freely available at https://github.com/Fun-Gene/fastQTLmapping . Compared to state-of-the-art methods (MatrixEQTL, FastQTL, and TensorQTL), fastQTLmapping demonstrated an order of magnitude speed improvement, coupled with a marked reduction in peak memory usage. In a large dataset consisting of 3500 individuals, 8 million SNPs, 0.8 million CpGs, and 20 covariates, fastQTLmapping completed the entire mQTL analysis in 4.5 h with only 13.1 GB peak memory usage.
Conclusions: FastQTLmapping effectively expedites comprehensive mQTL analyses by providing a robust and generic approach that accommodates large-scale genomic datasets with covariates. This solution has the potential to streamline mQTL-like studies and inform future method development for efficient computational genomics.
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.