Jiwon Lee , Seonggyeong Choi , Seoyeon Shin , Mohammad Rizwan Alam , Jamshid Abdul-Ghafar , Kyung Jin Seo , Gisu Hwang , Daeky Jeong , Gyungyub Gong , Nam Hoon Cho , Chong Woo Yoo , Hyung Kyung Kim , Yosep Chong , Kwangil Yim
{"title":"Ovarian Cancer Detection in Ascites Cytology with Weakly Supervised Model on Nationwide Data Set","authors":"Jiwon Lee , Seonggyeong Choi , Seoyeon Shin , Mohammad Rizwan Alam , Jamshid Abdul-Ghafar , Kyung Jin Seo , Gisu Hwang , Daeky Jeong , Gyungyub Gong , Nam Hoon Cho , Chong Woo Yoo , Hyung Kyung Kim , Yosep Chong , Kwangil Yim","doi":"10.1016/j.ajpath.2025.04.004","DOIUrl":null,"url":null,"abstract":"<div><div>Conventional ascitic fluid cytology for detecting ovarian cancer is limited by its low sensitivity. To address this issue, this multicenter study developed patch image (PI)-based fully supervised convolutional neural network (CNN) models and clustering-constrained attention multiple-instance learning (CLAM) algorithms for detecting ovarian cancer using ascitic fluid cytology. Whole-slide images (WSIs), 356 benign and 147 cancer, were collected, from which 14,699 benign and 8025 cancer PIs were extracted. Additionally, 131 WSIs (44 benign and 87 cancer) were used for external validation. Six CNN algorithms were developed for cancer detection using PIs. Subsequently, two CLAM algorithms, single branch (CLAM-SB) and multiple branch (CLAM-MB), were developed. ResNet50 demonstrated the best performance, achieving an accuracy of 0.973. The performance when interpreting internal WSIs was an area under the curve (AUC) of 0.982. CLAM-SB outperformed CLAM-MB with an AUC of 0.944 for internal WSIs. Notably, in the external test, CLAM-SB exhibited superior performance with an AUC of 0.866 compared with ResNet50's AUC of 0.804. Analysis of the heatmap revealed that cases frequently misinterpreted by AI were easily interpreted by humans, and vice versa. Because AI and humans were found to function complementarily, implementing computer-aided diagnosis is expected to significantly enhance diagnostic accuracy and reproducibility. Furthermore, the WSI-based learning in CLAM, eliminating the need for patch-by-patch annotation, offers an advantage over the CNN model.</div></div>","PeriodicalId":7623,"journal":{"name":"American Journal of Pathology","volume":"195 7","pages":"Pages 1254-1263"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Pathology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0002944025001439","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Conventional ascitic fluid cytology for detecting ovarian cancer is limited by its low sensitivity. To address this issue, this multicenter study developed patch image (PI)-based fully supervised convolutional neural network (CNN) models and clustering-constrained attention multiple-instance learning (CLAM) algorithms for detecting ovarian cancer using ascitic fluid cytology. Whole-slide images (WSIs), 356 benign and 147 cancer, were collected, from which 14,699 benign and 8025 cancer PIs were extracted. Additionally, 131 WSIs (44 benign and 87 cancer) were used for external validation. Six CNN algorithms were developed for cancer detection using PIs. Subsequently, two CLAM algorithms, single branch (CLAM-SB) and multiple branch (CLAM-MB), were developed. ResNet50 demonstrated the best performance, achieving an accuracy of 0.973. The performance when interpreting internal WSIs was an area under the curve (AUC) of 0.982. CLAM-SB outperformed CLAM-MB with an AUC of 0.944 for internal WSIs. Notably, in the external test, CLAM-SB exhibited superior performance with an AUC of 0.866 compared with ResNet50's AUC of 0.804. Analysis of the heatmap revealed that cases frequently misinterpreted by AI were easily interpreted by humans, and vice versa. Because AI and humans were found to function complementarily, implementing computer-aided diagnosis is expected to significantly enhance diagnostic accuracy and reproducibility. Furthermore, the WSI-based learning in CLAM, eliminating the need for patch-by-patch annotation, offers an advantage over the CNN model.
期刊介绍:
The American Journal of Pathology, official journal of the American Society for Investigative Pathology, published by Elsevier, Inc., seeks high-quality original research reports, reviews, and commentaries related to the molecular and cellular basis of disease. The editors will consider basic, translational, and clinical investigations that directly address mechanisms of pathogenesis or provide a foundation for future mechanistic inquiries. Examples of such foundational investigations include data mining, identification of biomarkers, molecular pathology, and discovery research. Foundational studies that incorporate deep learning and artificial intelligence are also welcome. High priority is given to studies of human disease and relevant experimental models using molecular, cellular, and organismal approaches.