Pascal Manuel, Dmitry Khalyavin, Fabio Orlandi, Laurent Chapon, Wang Xueyun, Tae Hwan Jang, Eun Sang Choi, Sang Wook Cheong
{"title":"Magnetic structure determination of multiple phases in the multiferroic candidate GdCrO<sub>3</sub>.","authors":"Pascal Manuel, Dmitry Khalyavin, Fabio Orlandi, Laurent Chapon, Wang Xueyun, Tae Hwan Jang, Eun Sang Choi, Sang Wook Cheong","doi":"10.1107/S2052520625001921","DOIUrl":null,"url":null,"abstract":"<p><p>Due to their potential applications in low-power consumption and/or multistate memory devices, multiferroic materials have attracted a lot of attention in the condensed matter community. As part of the effort to identify new multiferroic compounds, perovskite-based GdCrO<sub>3</sub> was studied in both bulk and thin film samples. A strong enhancement of the capacitance in a field suggested ferroelectric behaviour but significant leakage and no well developed P-E hysteresis loops were observed. Measurements clearly indicate the existence of a polar phase but only below 2 K (likely connected to Gd ordering). Here the determination of the magnetic structure through neutron diffraction collected on an isotopic <sup>160</sup>GdCrO<sub>3</sub> sample at the WISH diffractometer at ISIS is reported. The presence of three successive magnetic phases as a function of temperature (commensurate, spin re-orientation and incommensurate phases once the Gd order), previously only seen by magnetization, is confirmed. Using the most recent guidelines for reporting the determined structures, we highlight the benefits of using such nomenclature for discussing physical properties and consider possible mechanisms and couplings that led this seemingly rather isotropic system to display the complex structures observed.</p>","PeriodicalId":7320,"journal":{"name":"Acta crystallographica Section B, Structural science, crystal engineering and materials","volume":" ","pages":"293-301"},"PeriodicalIF":1.3000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12147934/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta crystallographica Section B, Structural science, crystal engineering and materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1107/S2052520625001921","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Due to their potential applications in low-power consumption and/or multistate memory devices, multiferroic materials have attracted a lot of attention in the condensed matter community. As part of the effort to identify new multiferroic compounds, perovskite-based GdCrO3 was studied in both bulk and thin film samples. A strong enhancement of the capacitance in a field suggested ferroelectric behaviour but significant leakage and no well developed P-E hysteresis loops were observed. Measurements clearly indicate the existence of a polar phase but only below 2 K (likely connected to Gd ordering). Here the determination of the magnetic structure through neutron diffraction collected on an isotopic 160GdCrO3 sample at the WISH diffractometer at ISIS is reported. The presence of three successive magnetic phases as a function of temperature (commensurate, spin re-orientation and incommensurate phases once the Gd order), previously only seen by magnetization, is confirmed. Using the most recent guidelines for reporting the determined structures, we highlight the benefits of using such nomenclature for discussing physical properties and consider possible mechanisms and couplings that led this seemingly rather isotropic system to display the complex structures observed.
期刊介绍:
Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials publishes scientific articles related to the structural science of compounds and materials in the widest sense. Knowledge of the arrangements of atoms, including their temporal variations and dependencies on temperature and pressure, is often the key to understanding physical and chemical phenomena and is crucial for the design of new materials and supramolecular devices. Acta Crystallographica B is the forum for the publication of such contributions. Scientific developments based on experimental studies as well as those based on theoretical approaches, including crystal-structure prediction, structure-property relations and the use of databases of crystal structures, are published.